Skip to main content
Log in

An Enhanced Low Noise Amplifier Circuit at 6 GHz Center Frequency and NF Improvement in 180 nm CMOS Process

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents the design and simulation of a modified CMOS low noise amplifier (LNA) circuit in 180 nm CMOS standard technology. We modified a cascade LNA using π model of capacitor circuit. Impedance matching network at the input of proposed circuit provides low noise figure (NF) and suitable gain at the operating frequency of 6 GHz. Obtained simulation results after extracting post layout (with total chip size 2500*1600 μm2) provide higher gain (S21) of 19.75 dB and noise figure of 1.14 dB. The reverse isolation (S12) of the LNA is also achieved to − 30.8 dB. A comparison table confirms that the proposed LNA circuit has better performance than the other recent works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Darabi, H., Khorram, S., Chien, H. M., Pan, M. A., Wu, S., & Moloudi, S. (2001). A 2.4-GHz CMOS transceiver for bluetooth. IEEE Journal of Solid-State Circuits, 36(12), 2016–2024.

    Article  Google Scholar 

  2. Toofan, S., Rahmati, A. R., Abrishamifar, A., & Roientan, L. G. (2007). A low-power and high-gain fully integrated CMOS LNA. Microelectronics Journal, 38(12), 1150–1155.

    Article  Google Scholar 

  3. Razavi, B. (2012). RF Microelectronics (2nd ed.). Prentice Hall Communications Engineering and Emerging Technologies Series from Ted Rappaport.

    Google Scholar 

  4. Belostotski, L., & Haslett, J. W. (2006). Noise figure optimization of inductively degenerated CMOS LNAs with integrated gate inductors. IEEE Transaction on Circuits and Systems-I: Regular Papers, 53(7), 1409–1422.

    Article  Google Scholar 

  5. Benmansour, M., & Mukund P. R. (2004). A tuned wideband LNA in 0.25μm IBM process for RF communication applications. In Proceedings of the 17th international IEEE conference on VLSI design (VLSID’04).

  6. Hamani, R., Andrei, C., Jarry, B., & Lintignat, J. (2014). LNA circuit design counting the interconnect line parasitics. In 21st IEEE international conference on electronics, circuits and systems (ICECS) (pp. 351–354).

  7. Vinaya, M. M., Paily, R., & Mahanta, A. (2016). Analysis and design of moderate inversion based low power low-noise amplifier. IET Computers & Digital Techniques, 10(5), 254–260.

    Article  Google Scholar 

  8. Hsiao, C. L., Weng, R.-M., Lin, K. Y. (2004). A 0.6V CMOS low noise amplifier for 2.4GHz application. In Proceedings of the 2004 IEEE Asia-Pacific conference on circuits and systems (vol. 1).

  9. Jamalkhah, A., & Hakimi, A. (2014). An ultra-wideband common gate LNA with Gm-boosted and noise canceling techniques. Journal of Information Systems and Telecommunication, 2(2), 113–118.

    Google Scholar 

  10. Liao, C. F., & Liu, S. I. (2007). A broadband noise-canceling CMOS LNA for 3.1–10.6 GHz UWB receivers. IEEE Journal of Solid-State Circuits, 42(2), 329–339.

    Article  Google Scholar 

  11. El-Desouki, M. M., Qasim, S. M., BenSaleh, M. S., & Deen, M. J. (2015). Toward realization of 2.4 GHz balunless narrowband receiver front-end for short range wireless applications. Sensors, 15, 10791–10805. https://doi.org/10.3390/s150510791

    Article  Google Scholar 

  12. Tarighat, A. P., & Yargholi, M. (2016). A CMOS low noise amplifier with employing noise cancellation and modified derivative superposition technique. Microelectronics Journal, 54, 116–125.

    Article  Google Scholar 

  13. Akbar, F., Atarodi, M., & Saeedi, S. (2015). Design method for a reconfigurable CMOS LNA with input tuning and active balun. AEU—International Journal of Electronics and Communications, 69(1), 424–431.

    Article  Google Scholar 

  14. Wang, J. J., Chen, D. Y., Wang, S. F., & Wei, R. S. (2016). A multi-band low noise amplifier with wide-band interference rejection improvement. AEU—International Journal of Electronics and Communications, 70(3), 320–325.

    Article  Google Scholar 

  15. Shokrekhodaei, M., Safarian, A., & Atarodi, S. M. (2018). A common gate LNA with negative resistance for noise reduction. Microelectronics Journal, 82, 5–12.

    Article  Google Scholar 

  16. Mudavath, M., Kishore, K. H., Hussain, A., & Boopathi, C. S. (2020). Design and analysis of CMOS RF receiver front-end of LNA for wireless applications. Microprocessors and Microsystems, 75, 102999.

    Article  Google Scholar 

  17. Eskandari, R., Ebrahimi, A., & Baghtash, H. F. (2021). A wideband low power merged balance-balun-LNA and I/Q-mixer. Microelectronics Journal, 107, 104945.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Nabavi, A. Khoei, and Kh. Hadidi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghader Yosefi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azizi, F., Yosefi, G. An Enhanced Low Noise Amplifier Circuit at 6 GHz Center Frequency and NF Improvement in 180 nm CMOS Process. Wireless Pers Commun 120, 2907–2917 (2021). https://doi.org/10.1007/s11277-021-08591-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08591-0

Keywords

Navigation