Skip to main content

Advertisement

Log in

The petrology of a hazardous volcano: Calbuco (Central Southern Volcanic Zone, Chile)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The recurrent explosive eruptions of Calbuco (Andean Southern Volcanic Zone (SVZ)) threat a rapidly expanding touristic and economic region of Chile. Providing tighter constraints on its magmatic system is therefore important for better monitoring its activity. Calbuco is also distinguished by hornblende-bearing assemblages that contrast with the anhydrous parageneses of most Central SVZ volcanoes. Here we build on previous work to propose a detailed petrological model of the magmatic system beneath Calbuco. Geochemical data acquired on a hundred samples collected in the four units of the volcano show no secular compositional change indicating a steady magmatic system since ~ 300 ka. A tholeiitic Al2O3-rich (20 wt. %) basalt (Mg# = 0.59) is the parent magma of a differentiation trend straddling the tholeiitic/calc-alkaline fields and displaying a narrow compositional Daly gap. Amphibole crystallization was enabled by the higher H2O content of the basalt (3–3.5 wt. % H2O at 50 wt. % SiO2) compared to neighboring volcanoes. This characteristic is inherited from the primary mantle melt and possibly results from a lower degree of partial melting induced by the mantle wedge thermal structure. Although macrocrysts are not all in chemical equilibrium with their host rocks and were thus presumably unlocked from the zoned crystal mush and transported in the carrier melt, the bulk-rock trend follows both experimental liquid lines of descent and the chemical trend of calculated melts in equilibrium with amphibole (AEMs). These contradictory observations can be reconciled if minerals are transported in near cotectic proportions. The AEMs overlap the Daly gap revealing that the missing liquid compositions were present in the storage region. Geothermobarometers all indicate that the chemical diversity from basalt to dacite was acquired at a shallow depth (210–460 MPa). We suggest that differentiation from the primary magma to the parental basalt took place either in the same storage region or at the MOHO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Miner Petrol 152:1–17

    Google Scholar 

  • Aigner-Torres M, Blundy J, Ulmer P, Pettke T (2007) Laser Ablation ICPMS study of trace element partitioning between plagioclase and basaltic melts: an experimental approach. Contrib Miner Petrol 153:647–667

    Google Scholar 

  • Almeev R, Holtz F, Ariskin A, Kimura J (2013) Storage conditions of Bezymianny Volcano parental magmas: results of phase equilibria experiments at 100 and 700 MPa. Contrib Miner Petrol 166:1389–1414

    Google Scholar 

  • Angermann D, Klotz J, Reigber C (1999) Space-geodetic estimation of the Nazca-South America Euler vector. Earth Planet Sci Lett 171(3):329–334

    Google Scholar 

  • Arzilli F, Morgavi D, Petrelli M, Polacci M, Burton M, Di Genova D, Spina L, La Spina G, Hartley M, Romero J (2019) The unexpected explosive sub-Plinian eruption of Calbuco volcano (22–23 April 2015; southern Chile): triggering mechanism implications. J Volcanol Geotherm Res 378:35–50

    Google Scholar 

  • Bachmann O, Huber C (2019) The Inner workings of crustal distillation columns; the physical mechanisms and rates controlling phase separation in silicic magma reservoirs. J Petrol 60(1):3–18

    Google Scholar 

  • Bachmann O, Deering C, Ruprecht J, Huber C, Skopelitis A, Schnyder C (2011) Evolution of silicic magmas in the Kos-Nisyros volcanic center, Greece: a petrological cycle associated with caldera collapse. Contrib Miner Petrol 163(1):151–166

    Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calc-alkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Miner Petrol 98:224–256

    Google Scholar 

  • Baker M, Grove TL, Price R (1994) Primitive basalts and andesites from Mt. Shasta region, N. California: products of varying fraction and water content. Contrib Miner Petrol 118:111–129

    Google Scholar 

  • Barclay J, Carmichael ISE (2004) A hornblende basalt from western Mexico: water-saturated phase relations constrain a pressure-temperature window of eruptibility. J Petrol 45(3):485–506

    Google Scholar 

  • Barnes C, Coint N, Yoshinobu A (2016) Crystal accumulation in a tilted arc batholith. Am Miner 101:1719–1734

    Google Scholar 

  • Barnes C, Werts K, Memeti V, Ardill K (2020) Most granitoid rocks are cumulates: deductions from hornblende compositions and zircon saturation. J Petrol 60:11

    Google Scholar 

  • Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117(1):57–71

    Google Scholar 

  • Bédard J (2005) Partitioning coefficients between olivine and silicate melts. Lithos 83:394–419

    Google Scholar 

  • Bédard J (2006) Trace element partitioning in plagioclase feldspar. Geochim Cosmochim Acta 70:3717–3742

    Google Scholar 

  • Bédard J (2007) Trace element partitioning coefficients between silicate melts and orthopyroxene: parameterizations of D variations. Chem Geol 244:263–303

    Google Scholar 

  • Bédard JH (2014) Parameterizations of calcic clinopyroxene—Melt trace element partition coefficients. Geochem Geophys Geosyst 15(2):303–336

    Google Scholar 

  • Blatter D, Sisson T, Hankins W (2013) Crystallization of oxidized, moderately hydrous arc basalt at mid- to lower-crustal pressures: implications for andesite genesis. Contrib Miner Petrol 166:861–886

    Google Scholar 

  • Blatter D, Sisson TW, Hankins W (2017) Voluminous arc dacites as amphibole reaction-boundary liquids. Contrib Miner Petrol 172:27

    Google Scholar 

  • Blundy J, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209

    Google Scholar 

  • Blundy J, Wood BJ (2003) Partitioning of trace elements between crystals and melts. Earth Planet Sci Lett 210:383–397

    Google Scholar 

  • Blundy J, Cashman KV, Rust A, Witham F (2010) A case for CO2-rich arc magmas. Earth Planet Sci Lett 290(3):289–330. https://doi.org/10.1016/j.epsl.2009.12.013

    Article  Google Scholar 

  • Boudreau AE (2019) The effects of volatiles on mineral stability and volatile fluxing. In: Boudreau A (ed) Hydromagmatic processes and platinum-group element deposits in layered intrusions. Cambridge University Press, Cambridge, pp 140–155

    Google Scholar 

  • Bouvet de Maisonneuve C, Dungan MA, Bachmann O, Burgisser A (2012) Insights into shallow magma storage and crystallization at Volcán Llaima (Andean Southern Volcanic Zone, Chile). J Volcanol Geotherm Res 211–212:76–91. https://doi.org/10.1016/j.jvolgeores.2011.09.010

    Article  Google Scholar 

  • Bouvet De Maisonneuve C, Dungan MA, Bachmann O, Burgisser A (2013) Petrological insights into shifts in eruptive styles at Volcán Llaima (Chile). J Petrol 54(2):393–420. https://doi.org/10.1093/petrology/egs073

  • Cashman KV, Blundy J (2013) Petrological cannibalism: the chemical and textural consequences of incremental magma body growth. Contrib Miner Petrol 166:703–729

    Google Scholar 

  • Cashman K, Sparks R, Blundy J (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355:6331

    Google Scholar 

  • Castruccio A, Clavero J, Segura A, Samaniego P, Roche O, Le Pennec J-L, Droguett B (2016) Eruptive parameters and dynamics of the April 2015 sub-Plinian eruptions of Calbuco volcano (southern Chile). Bull Volcanol 78:62

    Google Scholar 

  • Cembrano J, Lara L (2009) The link between volcanism and tectonics in the Southern Volcanic Zone of the Chilean Andes: a review. Tectonophysics 471:96–113

    Google Scholar 

  • Charlier B, Grove TL, Namur O, Holtz F (2018) Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon. Geochim Cosmochim Acta 234:50–69

    Google Scholar 

  • Chaussard E, Amelung F (2014) Regional controls on magma ascent and storage in volcanic arcs. Geochem Geophys Geosyst 15(4):1407–1418. https://doi.org/10.1002/2013gc005216

  • Christensen N, Mooney W (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100(B7):9761–9788

    Google Scholar 

  • Clayton J, Clapperton C, Antinao J (1997) Las glaciaciones pleistocenas en la cuenca del lago Villarrica, Andes del Sur. In: Congreso Geológico Chileno, vol 8. Antofagasta, pp 307–311

  • Cooper K, Kent A (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 506:480–483

    Google Scholar 

  • Dixon J (1997) Degassing of alkalic basalts. Am Miner 82:368–378

    Google Scholar 

  • Dostal J, Dupuy C, Carron JP, Dekerneizon ML, Maury RC (1983) Partition coefficients of trace elements-application to volcanic rocks of St-Vincent West-Indies. Geochim Cosmochim Acta 47(3):525–533

    Google Scholar 

  • Dunn T, Sen C (1994) Mineral/matrix partition-coefficients for orthopyroxene, plagioclase and olivine in basaltic to andesitic systems—a combined analytical and experimental study. Geochim Cosmochim Acta 58(2):717–733

    Google Scholar 

  • Dzierma Y, Thorwart M, Rabbel W (2012) Moho topography and subducting oceanic slab of the Chilean continental margin in the maximum slip segment of the 1960 Mw 9.5 Valdivia (Chile) earthquake from P-receiver functions. Tectonophysics 530–531:180–192

    Google Scholar 

  • Eichelberger J, Izbekov P, Browne B (2006) Bulk chemical trends at arc volcanoes are not liquid lines of descent. Lithos 87:135–154

    Google Scholar 

  • Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory, Geophysical Monograph 138. American Geophysical Union, Washington DC, USA, pp 23–45

  • Erdmann S, Martel C, Pichavant M, Kushnir A (2014) Amphibole as an archivist of magmatic crystallization conditions: problems, potential, and implications for inferring magma storage prior to the paroxysmal 2010 eruption of Mount Merapi, Indonesia. Contrib Miner Petrol 167:1016

    Google Scholar 

  • Ewart A, Griffin W (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284

    Google Scholar 

  • Frost B, Frost C (2019) Essentials of igneous and metamorphic petrology. Cambridge University Press, Cambridge

    Google Scholar 

  • Gallahan W, Nielsen R (1992) The partitioning of Sc, Y, and the rare earth elements between high-Ca pyroxene and natural mafic to intermediate lavas at 1 atmosphere. Geochim Cosmochim Acta 56(6):2387–2404

    Google Scholar 

  • Ghiorso MS, Gualda G (2015) An H2O–CO2 mixed fluid saturation model compatible with Rhyolite-MELTS. Contrib Miner Petrol 169:53. https://doi.org/10.1007/s00410-015-1141-8

  • Ghiorso MS, Sack RO (1991) Thermochemistry of the oxide minerals. Rev Min 25:221–264

    Google Scholar 

  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14(4/5):4–11

    Google Scholar 

  • Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N California. Contrib Miner Petrol 127:205–223

    Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib Miner Petrol 145:515–533

    Google Scholar 

  • Grove TL, Till CB, Krawczynski MJ (2012) The role of H2O in subduction zone magmatism. Annu Rev Earth Planet Sci 40:413–439

    Google Scholar 

  • Gualda G, Ghiorso MS, Lemons R, Carley T (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890

    Google Scholar 

  • Gudmundsson A (2012) Magma chambers: formation, local stresses, excess pressures, and compartments. J Volcanol Geotherm Res 237–238:19–41. https://doi.org/10.1016/j.jvolgeores.2012.05.015

    Article  Google Scholar 

  • Harrison TM, Watson EB (1984) The behavior of apatite during crustal anatexis: equilibrium and kinetic considerations. Geochim Cosmochim Acta 48:1467–1477

    Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117(1):149–166. https://doi.org/10.1016/0009-2541(94)90126-0

    Article  Google Scholar 

  • Hayes J, Deligne N, Bertin L, Calderon R, Wardman J, Wilson T, Leonard G, Stewart C, Wallace K, Baxter P (2019) Impacts of the 2015 eruption of Calbuco volcano on Chilean infrastructure, utilities, agriculture and health. Geol Nucl Sci Rep 4:102

    Google Scholar 

  • Hickey RL, Frey FA, Gerlach DC (1986) Multiple sources for basaltic arc rocks from the Southern Volcanic Zone of the Andes (34°–41°S): trace element and isotopic evidence for contributions from subducting oceanic crust, mantle, and continental crust. J Geophys Res 91:5963–5983

    Google Scholar 

  • Hickey-Vargas R, Abdollahi MMA, Lopez-Escobar L, Frey FA (1995) Crustal xenoliths from Calbuco Volcano, Andean Southern Volcanic Zone: implications for crustal composition and magma-crust interaction. Contrib Miner Petrol 119:331–344

  • Hickey-Vargas R, Holbik S, Tormey D, Frey FA, Moreno Roa H (2016b) Basaltic rocks from the andean southern volcanic zone: insights from the comparison of along-strike and small-scale geochemical variations and their sources. Lithos 258–259:115–132. https://doi.org/10.1016/j.lithos.2016.04.014

  • Hickey-Vargas R, Sun M, Holbik S (2016a) Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: evidence for lithospheric mantle components in continental arc magmas. Geochim Cosmochim Acta 185:358–382

    Google Scholar 

  • Higgins M, Voos S, Vander Auwera J (2015) Magmatic processes under Quizapu Volcano, Chile, identified from geochemical and textural studies. Contrib Miner Petrol 170:51–67

    Google Scholar 

  • Holloway J, Burnham C (1972) Melting relations of basalt with equilibrium water pressures less than total pressure. J Petrol 13:1–30

    Google Scholar 

  • Holtz F, Pichavant M, Barbey P, Johannes W (1992) Effects of H2O on liquidus phase relations in the haplogranite system at 2 and 5 kbar. Am Miner 77:1223–1241

    Google Scholar 

  • Huber C, Townsend M, Degruyter W, Bachmann O (2019) Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat Geosci 12(9):1–7

    Google Scholar 

  • Humphreys MCS, Cooper G, Zhang J, Loewen M, Kent A, Macpherson C, Davidson J (2019) Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole. Contrib Miner Petrol 174(1):9

  • Irvine T, Baragar W (1971) A guide to chemical classification of common volcanic rocks. Can J Earth Sc 8:523–548

    Google Scholar 

  • Jackson M, Blundy J, Sparks RSJ (2018) Chemical differentiation, cold storage and remobilization of magma in the Earth’s crust. Nature 564:405–409

    Google Scholar 

  • Kawamoto T (1996) Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett 144:577–589

    Google Scholar 

  • Kelley K, Plank T, Ludden J, Staudigel H (2003) Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem Geophys Geosyst 4(6):8910

    Google Scholar 

  • Kelley KA, Plank T, Newman S, Stolper EM, Grove TL, Parman S, Hauri EH (2010) Mantle melting as a function of water content beneath the Mariana Arc. J Petrol 51:1711–1738

    Google Scholar 

  • Lachance G, Traill R (1966) A practical solution to the matrix problem in X-ray analysis. Can J Spectrosc 11:43–46

    Google Scholar 

  • Laubier M, Grove TL, Langmuir C (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278

    Google Scholar 

  • Leake B, Wooley A, Arps C, Birch W, Gilbert M, Grice J, Hawthorne F, Kato A, Kisch H, Krivovichev V, Linthout K, Laird J, Mandarino J, Maresch W, Nickel E, Schumacher J, Smith D, Stephenson N, Ungaretti L, Whittaker E, Youzhi G (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and names. Can Mineral 35:219–246

    Google Scholar 

  • Leake B, Wooley A, Birch W, Burke E, Ferraris G, Grice J, Hawthorne F, Kisch H, Krivovichev V, Schumacher J, Stephenson N, Whittaker E (2003) Nomenclature of amphiboles: additions and revisions to the international mineralogical association’s 1997 recommendations. Can Mineral 41:1355–1362

    Google Scholar 

  • Lemarchand F, Benoit V, Calais G (1987) Trace element distribution coefficients in alkaline series. Geochim Cosmochim Acta 51:1071–1081

    Google Scholar 

  • Longhi J, Walker D, hays J (1976) Fe and Mg in plagioclase. In: Proceedings 7th Lunar Science Conference, 1:1281–1300.

  • Longhi J, Vander Auwera J, Fram M, Duchesne JC (1999) Some phase equilibrium constraints on the origin of Proterozoic (Massif) anorthosites and related rocks. J Petrol 40(2):339–362

    Google Scholar 

  • Longpré M-A, Stix J, Costa F, Espinoza E, Munoz A (2014) Magmatic processes and associated timescales leading to the january 1835 eruption of Cosiguina volcano. Nicaragua. J Petrol 55(6):1173–1201

    Google Scholar 

  • Lopez-Escobar L, Parada M, Moreno RH, Frey FA, Hickey-Vargas R (1992) A contribution to the petrogenesis of Osorno and Calbuco volcanoes, Southern Andes (41°–41°30’ S): comparative study. Rev Geol Chile 19(2):211–226

    Google Scholar 

  • Lopez-Escobar L, Parada M, Hickey-Vargas R, Frey F, Kempton P, Moreno H (1995) Calbuco volcano and minor eruptive centers distributed along the Liquiñe-Ofqui Fault Zone, Chile (41°–42°S): contrasting origin of andesitic and basaltic magma in the Southern Volcanic Zone of the Andes. Contrib Miner Petrol 119:345–361

    Google Scholar 

  • Lucassen F, Wiedicke M, Franz G (2010) Complete recycling of a magmatic arc: evidence from chemical and isotopic composition of Quaternary trench sediments in Chile (36°–40°S). Intern J Earth Sci 99:687–701

    Google Scholar 

  • Martel C, Pichavant M, Holtz F, Scaillet B, Bourdier J-L, Traineau H (1999) Effects of fO2 and H2O on andesite phase relations between 2 and 4 kbar. J Geophys Res 104:29453–29470

    Google Scholar 

  • Montalbano S (2018) Processus de différenciation et sources des magmas du volcan Calbuco (Zone Volcanique Sud, Chili). PhD dissertation, University of Liege

  • Moore G, Carmichael IS (1998) The hydrous phase equilibria (to 3kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Miner Petrol 130:304–319

    Google Scholar 

  • Moreno R H, Clavero J (2006) Geologia del volcan Villarrica. Servicio Nacional de Geologie y Mineria, Carta Geologica de Chile, Santiago

  • Moreno H, Lara L, Orozco G (2010) Geologia del volcan Osorno, Region de Los Lagos. Servicio Nacional de Geologie y Mineria, Carta Geologica de Chile, Santiago

  • Morgado E, Parada M, Contreras C, Castruccio A, Gutiérrez F, McGee LE (2015a) Contrasting records from mantle to surface of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano. J Volcanol Geotherm Res 306:1–16

    Google Scholar 

  • Morgado E, Morgan D, Castruccio A, Ebmeier S, Parada M, Brahm R, Harvey J, Gutiérrez F, Walshaw R (2019b) Old magma and a new, intrusive trigger: using diffusion chronometry to understand the rapid-onset Calbuco eruption, April 2015 (Southern Chile). Contrib Miner Petrol 174:61

    Google Scholar 

  • Morgado E, Morgan D, Harvey J, Parada M-A, Castruccio A, Brahm R, Gutierrez F, Georgiev B, Hammond S (2019) Localised heating and intensive magmatic conditions prior to the 22–23 April 2015 Calbuco volcano eruption (Southern Chile). Bull Volcanol 81(4):24

    Google Scholar 

  • Müntener O, Kelemen P, Grove T (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib Miner Petrol 141:643–658

    Google Scholar 

  • Namur O, Charlier B (2012) Efficiency of compaction and compositional convection during mafic crystal mush solidification: the Sept Iles layered intrusion, Canada. Contrib Miner Petrol 163(6):1049–1068. https://doi.org/10.1007/s00410-011-0715-3

  • Namur O, Abily B, Boudreau A, Blanchette F, Bush J, Ceuleneer G, Charlier B, Donaldson C, Duchesne J, Higgins M, Morata D, Nielsen T, O’’Driscoll B, Pang K, Peacock T, Spandler C, Toramaru A, Veksler I, JA (2015) Igneous Layering in basaltic magma chambers. In: Charlier B et al. (eds) Layered Intrusions, Springer, pp 75–152

  • Namur O, Montalbano S, Bolle O, Vander Auwera J (2020) Petrology of the April 2015 eruption of Calbuco volcano, southern Chile. J Petrol 61(8). https://doi.org/10.1093/petrology/egaa084

  • Nandedkar R, Ulmer P, Müntener O (2014) Fractional crystallization of primitive hydrous arc magmas: an experimental study at 0.7 GPa. Contrib Miner Petrol 167:1015–1041

    Google Scholar 

  • Neave D, Putirka KD (2017) A new clinopyroxene-liquid barometer, and implications for magma storage pressures under Icelandic rift zones. Am Miner 102:777–794

    Google Scholar 

  • Neave DA, Maclennan J, Hartley M, Edmonds M, Thordarson T (2014) Crystal storage and transfer in basaltic systems: the Skuggafjöll eruption, Iceland. J Petrol 55(12):2311–2346

    Google Scholar 

  • Panjasawatwong Y, Danyushevsky L, Crawford A, Harris K (1995) An experimental study of the effects of melt composition on plagioclase—melt equilibria at 5 and 10 kbar: implications for the origin of magmatic high—an plagioclase. Contrib Miner Petrol 118:420–432

    Google Scholar 

  • Parada M, Godoy E, Hervé F, Thiele R (1987) Miocene calc-alkaline plutonism in the Chilean Southern Andes. Revista Brasileira De Geociências 17(4):450–455

    Google Scholar 

  • Parat F, Streck M, Holtz F, Almeev R (2014) Experimental study into the petrogenesis of crystal-rich basaltic to andesitic magmas at Arenal volcano. Contrib Miner Petrol 168:1040

    Google Scholar 

  • Patiño Douce A, Harris N (1998) Experimental constraints on Himalayan anatexis. J Petrol 39(4):689–710

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Miner Petrol 58:63–81

    Google Scholar 

  • Petrelli M, Caricchi L, Perugini D (2020) Machine learning thermobarometry: application to clinopyroxene-bearing magmas. J Geophys Res 125. https://doi.org/10.1029/2020JB020130.

  • Pichavant M, Macdonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Miner Petrol 154:535–558

    Google Scholar 

  • Pichavant M, Martel C, Bourdier J-L, Scaillet B (2002) Physical conditions, structure and dynamics of a zoned magma chamber: Mt. Pelée (Martinique, Lesser Antilles arc). J Geophys Res 107(B5):ECV 1–1-ECV 1–28

  • Pioli L, Scalisi L, Constantini L, Di Muro A, Bonadonna C, Clavero J (2015) Explosive style, magma degassing and evolution in the Chaimilla eruption, Villarrica volcano, Southern Andes. Bull Volcanol 77:93

    Google Scholar 

  • Plank T (2014) The chemical composition of subducting sediments. In: Rudnick R (ed) Treatise on Geochemistry 2nd Edition, vol 3: The Crust. Elsevier, pp 607–629

  • Plank T, Kelley K, Zimmer M, Hauri E, Wallace PJ (2013) Why do mafic arc magmas contain ≈ 4 wt % water on average? Earth Planet Sci Lett 364:168–179

    Google Scholar 

  • Porter S (1981) Pleistocene glaciation in the southern Lake District of Chile. Quatern Res 16(3):263–292

    Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Google Scholar 

  • Putirka KD (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Miner 101(4):841–858

    Google Scholar 

  • Putirka KD (2017) Down the crater: where magmas are stored and why they erupt. Elements 13:11–16

    Google Scholar 

  • Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130 °C and 2.2 GPa. Contrib Miner Petrol 163(5):877–895.https://doi.org/10.1007/s00410-011-0704-6

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Miner Petrol 160(1):45–66

    Google Scholar 

  • Rodriguez C, Dungan M, Sellés D, Langmuir C (2007) Adakitic dacites formed by intracrustal crystal fractionation of water-rich parent magmas at Nevado de Longavi volcano (36.2 °S; Andean Southern Volcanic Zone, Central Chile). J Petrol 48(11):2033–2061

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Miner Petrol 19:275–289

    Google Scholar 

  • Romero J, Morgavi D, Arzilli F, Daga R, Caselli A, Reckziegel F, Viramonte J, Diaz-Alvarado J, Polacci M, Burton M, Perugini D (2016) Eruption dynamics of the 22–23 April 2015 Calbuco Volcano (Southern Chile): analyses of tephra fall deposits. J Volcanol Geotherm Res 317:15–29

    Google Scholar 

  • Rubin A, Cooper K, Till C, Kent A, Costa F, Bose M, Gravley D, Deering C, Cole J (2017) Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science 356:1154–1156

    Google Scholar 

  • Ruth DCS, Cottrell E, Cortés JA, Kelley KA, Calder ES (2016) From passive degassing to violent strombolian eruption: the case of the 2008 Eruption of Llaima Volcano, Chile. J Petrol 57(9):1833–1864. https://doi.org/10.1093/petrology/egw063

  • Rutherford M, Hill P (1993) Magma ascent rates from amphibole breakdown: an experimental study applied to the 1980–1986 Mount St. Helens eruptions. J Geophys Res 98(B11)

  • Sellés D, Moreno H (2011) Geologia del volcan Calbuco. Servicio Nacional de Geologie y Mineria, Carta Geologica de Chile, Santiago

  • Sellés D, Rodriguez A, Dungan M, Naranjo J, Gardeweg M (2004) Geochemistry of Nevado de Longavi Volcano (36.2°S): a compositionally atypical arc volcano in the Southern Volcanic Zone of the Andes. Revista Geologica de Chile 31(2):293–315

  • Sievwright RH, Wilkinson C, O’Neill HCC, Berry AJ (2017) Thermodynamic controls on element partitioning between titanomagnetite and andesitic-dacitic silicate melts. Contrib Miner Petrol 172:62

    Google Scholar 

  • Sigmarsson O, Laporte D, Carpentier M, Devouard B, Devidal J-L, Marti J (2013) Formation of U-depleted rhyolite from a basanite at El Hierro, Canary Islands. Contrib Miner Petrol 165:601–622

    Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113:143–166

    Google Scholar 

  • Solano J, Jackson M, Sparks RSJ, Blundy J (2014) Evolution of major and trace element composition during melt migration through crystalline mush: implications for chemical differentiation in the crust. Am J Sci 314:895–939

    Google Scholar 

  • Stormer J, Nicholls J (1978) XLFRAC: a program for the interactive testing of magmatic differentiation models. Comput Geosci 4(2):143–159

    Google Scholar 

  • Sun S, McDonough W (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders A, Norry M (eds) Magmatism in the ocean basins, vol 42, Blackwell Scientific publications, pp 313–345

  • Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7(5). https://doi.org/10.1029/2005GC001045

  • Tassara A, Echaurren A (2012) Anatomy of the Andean subduction zone: three dimensional density model upgraded and compared against global-scale models. Geophys J Int 189:161–168

    Google Scholar 

  • Tassara A, Götze H, Schmidt S, Hackney R (2006) Three-dimensional density model of the Nazca plate and the Andean continental margin. J Geophys Res 111:B09404. https://doi.org/10.1029/2005JB003976.

  • Tegner C, Thy P, Holness MB, Jakobsen JK, Lesher CE (2009) Differentiation and compaction in the Skaergaard Intrusion. J Petrol 50(5):813–840. https://doi.org/10.1093/petrology/egp020

  • Toplis M, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Miner Petrol 144:22–37

    Google Scholar 

  • Turner S, Langmuir C, Dungan M, Escrig S (2017) The importance of mantle wedge heterogeneity to subduction zone magmatism and the origin of EM1. Earth Planet Sci Lett 472:216–228

    Google Scholar 

  • Ulmer P, Kaegi R, Müntener O (2018) Experimentally derived intermediate to silica-rich arc magmas by fractional and equilibrium crystallization at 1.0 GPa: an evaluation of phase relationships, compositions, liquid lines of descent and oxygen fugacity. J Petrol 59(2):11–58

  • Van Achterberg E, Ryan C, Jackson S, Griffin W (2001) Data reduction software for LA-ICP-MS. In: Sylveter P (ed) Laser-ablation-ICPMS in the earth sciences: principles and applications, Mineralogical Association of Canada Short Course, vol 29, pp 239–243

  • Van Eaton A, Amigo Á, Bertin D, Mastin L, Giacosa R, González J, Valderrama Ó, Fontijn K, Behnke S (2016) Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile. Geophys Res Lett 43(7):3563–3571

    Google Scholar 

  • Vander Auwera J, Namur O, Dutrieux A, Wilkinson C, Ganerød M, Coumont V, Bolle O (2019) Mantle melting and magmatic processes under La Picada stratovolcano (CSVZ, Chile). J Petrol 60(5):873–906

    Google Scholar 

  • Villiger S, Ulmer P, Müntener O (2007) Equilibrium and fractional crystallization experiments at 0.7 GPa; the effect of pressure and phase relations and liquid compositions of tholeiitic magmas. J Petrol 48(1):159–184

  • Wallace P (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Google Scholar 

  • Watt SFL, Pyle DM, Mather TA, Naranjo JA (2013) Arc magma compositions controlled by linked thermal and chemical gradients above the subducting slab. Geophys Res Lett 40:2550–2556

    Google Scholar 

  • Weller D, Stern C (2018) Along-strike variability of primitive magmas (major and volatile elements) inferred from olivine-hosted melt inclusions, southernmost Andean Southern Volcanic Zone, Chile. Lithos 296:233–244

    Google Scholar 

  • Werts K, Barnes C, Memeti V, Paterson S, Ratschbacher B, Williams D (2020) Hornblende as a tool for assessing mineral-melt equilibrium and recognition of crystal accumulation. Am Miner 105:77–91

    Google Scholar 

  • Whitney D, Evans B (2010) Abbreviations for names of rock-forming minerals. Am Miner 95:185–187

    Google Scholar 

  • Wood BJ, Blundy J (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Miner Petrol 129:166–181

    Google Scholar 

  • Zhang J, Humphreys MCS, Cooper G, Davidson J, Macpherson C (2017) Magma mush chemistry at subduction zones, revealed by new melt major element inversion from calcic amphiboles. Am Miner 102:1353–1367

    Google Scholar 

Download references

Acknowledgements

Luis Lara is greatly thanked for his help in the organization of the fieldwork. Pia Plese participated to the 2016 fieldwork. This research was supported by FNRS Grants CDR J.00066.14, PDR T.0079.18 to JVDA. ON acknowledges support from the FWO through an Odysseus grant. We thank our reviewers for providing constructive comments that improved this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Vander Auwera.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vander Auwera, J., Montalbano, S., Namur, O. et al. The petrology of a hazardous volcano: Calbuco (Central Southern Volcanic Zone, Chile). Contrib Mineral Petrol 176, 46 (2021). https://doi.org/10.1007/s00410-021-01803-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01803-7

Keywords

Navigation