Skip to main content

Advertisement

Log in

Nickel Nanoparticles with Narrow Size Distribution Confined in Nitrogen-Doped Carbon for Efficient Reduction of CO2 to CO

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Facilely tailored electrocatalyst with high-efficiency and durability for carbon dioxide (CO2) to carbon monoxide (CO) conversion is appealing but remains challenging. Herein, small nickel nanoparticles (about 19.4 nm) confined in nitrogen-doped carbon (Ni NPs@N–C) with narrow size distribution are successfully constructed via a facile one-step calcination strategy of Ni containing MOF compounds. By virtue of the protective N-doped graphitized carbon shell and the uniformly distributed fine Ni nanoparticles in a narrow range from 13 to 21 nm, the as-obtained Ni NPs@N–C can exclusively convert CO2 into CO with excellent Faradaic efficiency (FE) of 96.8% at − 1.0 V (vs. RHE), as well as the superior long-term catalytic stability over 24 h. Moreover, a high current density of more than 200 mA cm−2 with a stable CO FE of 92% can be achieved in a flow cell configuration. This work paves a new way for the facile and potentially scale preparation of small metal nanoparticles for efficient CO2- to-CO conversion.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang L, Chen W, Zhang D, Du Y, Amal R, Qiao S, Wu J, Yin Z (2019) Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem Soc Rev 48(21):5310–5349

    Article  CAS  PubMed  Google Scholar 

  2. Vasileff A, Zheng Y, Qiao SZ (2017) Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv Energy Mater 7(21):1700759

    Article  Google Scholar 

  3. Hou L, Yan J, Takele L, Wang Y, Yan X, Gao Y (2019) Current progress of metallic and carbon-based nanostructure catalysts towards the electrochemical reduction of CO2. Inorg chem 6(12):3363–3380

    CAS  Google Scholar 

  4. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Norskov JK, Jaramillo TF (2017) Combining theory and experiment in electrocatalysis: insights into materials design. Science 355:6321

    Article  Google Scholar 

  5. Jiang X, Li H, Xiao J, Gao D, Si R, Yang F, Li Y, Wang G, Bao X (2018) Carbon dioxide electroreduction over imidazolate ligands coordinated with Zn(II) center in ZIFs. Nano Energy 52:345–350

    Article  CAS  Google Scholar 

  6. Kibria MG, Edwards JP, Gabardo CM, Dinh CT, Seifitokaldani A, Sinton D, Sargent EH (2019) Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv Mater 31(31):1807166

    Article  Google Scholar 

  7. Jia M, Choi C, Wu TS, Ma C, Kang P, Tao H, Fan Q, Hong S, Liu S, Soo YL, Jung Y, Qiu J, Sun Z (2018) Carbon-supported Ni nanoparticles for efficient CO2 electroreduction. Chem Sci 9(47):8775–8780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pan F, Deng W, Justiniano C, Li Y (2018) Identification of champion transition metals centers in metal and nitrogen-codoped carbon catalysts for CO2 reduction. Appl Catal B 226:463–472

    Article  CAS  Google Scholar 

  9. Zhu DD, Liu JL, Qiao SZ (2016) Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv Mater 28(18):3423–3452

    Article  CAS  PubMed  Google Scholar 

  10. Nielsen DU, Hu XM, Daasbjerg K, Skrydstrup T (2018) Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat Catal 1(4):244–254

    Article  CAS  Google Scholar 

  11. Hernández S, Amin Farkhondehfal M, Sastre F, Makkee M, Saracco G, Russo N (2020) Syngas production from electrochemical reduction of CO2: current status and prospective implementation. Green Chem 19(10):2326–2346

    Article  Google Scholar 

  12. Peng X, Karakalos SG, Mustain WE (2018) Preferentially oriented Ag nanocrystals with extremely high activity and faradaic efficiency for CO2 electrochemical reduction to CO. ACS Appl Mater Interfaces 10(2):1734–1742

    Article  CAS  PubMed  Google Scholar 

  13. Back S, Kim JH, Kim YT, Jung Y (2016) Bifunctional interface of Au and Cu for improved CO2 electroreduction. ACS Appl Mater Interfaces 8(35):23022–23027

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Xi S, Sun L, Dou S, Huang Z, Su T, Wang X (2020) Isolated FeN4 sites for efficient electrocatalytic CO2 reduction. Adv Sci (Weinh) 7(17):2001545

    Article  CAS  Google Scholar 

  15. Jiang K, Siahrostami S, Zheng T, Hu Y, Hwang S, Stavitski E, Peng Y, Dynes J, Gangisetty M, Su D, Attenkofer K, Wang H (2018) Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ Sci 11(4):893–903

    Article  CAS  Google Scholar 

  16. Zhao C, Dai X, Yao T, Chen W, Wang X, Wang J, Yang J, Wei S, Wu Y, Li Y (2017) Ionic Exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc 139(24):8078–8081

    Article  CAS  PubMed  Google Scholar 

  17. Li X, Bi W, Chen M, Sun Y, Ju H, Yan W, Zhu J, Wu X, Chu W, Wu C, Xie Y (2017) Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction. J Am Chem Soc 139(42):14889–14892

    Article  CAS  PubMed  Google Scholar 

  18. Yang HB, Hung SF, Liu S, Yuan K, Miao S, Zhang L, Huang X, Wang HY, Cai W, Chen R, Gao J, Yang X, Chen W, Huang Y, Chen HM, Li CM, Zhang T, Liu B (2018) Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat Energy 3(2):140–147

    Article  CAS  Google Scholar 

  19. Chen SX, Li YW, Bu ZG, Yang FQ, Luo JH, An QZ, Zeng ZL, Wang J, Deng SG (2021) Boosting CO2-to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength. J Mater Chem A 9(3):1705–1712

    Article  CAS  Google Scholar 

  20. Ju W, Bagger A, Hao GP, Varela AS, Sinev I, Bon V, Roldan Cuenya B, Kaskel S, Rossmeisl J, Strasser P (2017) Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat Commun 8(1):1–9

    Article  Google Scholar 

  21. Bi W, Li X, You R, Chen M, Yuan R, Huang W, Wu X, Chu W, Wu C, Xie Y (2018) Surface immobilization of transition metal ions on nitrogen-doped graphene realizing high-efficient and selective CO2 reduction. Adv Mater 30(18):1706617

    Article  Google Scholar 

  22. Li Z, He D, Yan X, Dai S, Younan S, Ke Z, Gu J (2020) Size-dependent nickel-based electrocatalysts for selective CO2 reduction. Angew Chem 132(42):18731–18736

    Article  Google Scholar 

  23. Yang F, Jiang C, Ma M, Shu F, Mao X, Yu W, Wang J, Zeng Z, Deng S (2020) Solid-state synthesis of Cu nanoparticles embedded in carbon substrate for efficient electrochemical reduction of carbon dioxide to formic acid. Chem Eng J 400:125879

    Article  CAS  Google Scholar 

  24. Wu D, Wang X, Fu XZ, Luo JL (2020) Ultrasmall Bi nanoparticles confined in carbon nanosheets as highly active and durable catalysts for CO2 electroreduction. Appl Catal B 284:119723

    Article  Google Scholar 

  25. Daiyan R, Lu X, Tan X, Zhu X, Chen R, Smith SC, Amal R (2019) Antipoisoning nickel-carbon electrocatalyst for practical electrochemical CO2 reduction to CO. ACS Appl Energy Mater 2(11):8002–8009

    Article  CAS  Google Scholar 

  26. Liu S, Yang H, Huang X, Liu L, Cai W, Gao J, Li X, Zhang T, Huang Y, Liu B (2018) Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction. Adv Funct Mater 28(21):1800499

    Article  Google Scholar 

  27. Yu W, Shu F, Huang Y, Yang F, Meng Q, Zou Z, Wang J, Zeng Z, Zou G, Deng S (2020) Enhanced electrocatalytic nitrogen reduction activity by incorporation of a carbon layer on SnS microflowers. J Mater Chem A 8(39):20677–20686

    Article  CAS  Google Scholar 

  28. Guo H, Zheng Z, Zhang Y, Lin H, Xu Q (2017) Highly selective detection of Pb2+ by a nanoscale Ni-based metal–organic framework fabricated through one-pot hydrothermal reaction. Sens Actuators B 248:430–436

    Article  CAS  Google Scholar 

  29. Guo C, Zhang Y, Guo Y, Zhang L, Zhang Y, Wang J (2018) A general and efficient approach for tuning the crystal morphology of classical MOFs. Chem Commun (Camb) 54(3):252–255

    Article  CAS  Google Scholar 

  30. Mao F, Liu PF, Yang P, Gu J, Yang HG (2020) One-step coating of commercial Ni nanoparticles with a Ni, N-co-doped carbon shell towards efficient electrocatalysts for CO2 reduction. Chem Commun (Camb) 56(54):7495–7498

    Article  CAS  Google Scholar 

  31. Mateo D, Albero J, García H (2018) Graphene supported NiO/Ni nanoparticles as efficient photocatalyst for gas phase CO2 reduction with hydrogen. Appl Catal B 224:563–571

    Article  CAS  Google Scholar 

  32. Sevilla M, Fuertes AB (2006) Catalytic graphitization of templated mesoporous carbons. Carbon 44(3):468–474

    Article  CAS  Google Scholar 

  33. Artyushkova K, Kiefer B, Halevi B, Knop-Gericke A, Schlogl R, Atanassov P (2013) Density functional theory calculations of XPS binding energy shift for nitrogen-containing graphene-like structures. Chem Commun (Camb) 49(25):2539–2541

    Article  CAS  Google Scholar 

  34. Kabir S, Artyushkova K, Kiefer B, Atanassov P (2015) Computational and experimental evidence for a new TM-N3/C moiety family in non-PGM electrocatalysts. Phys Chem Chem Phys 17(27):17785–17789

    Article  CAS  PubMed  Google Scholar 

  35. Lai Q, Zheng L, Liang Y, He J, Zhao J, Chen J (2017) Metal–organic-framework-derived Fe-N/C electrocatalyst with five-coordinated Fe-Nx Sites for advanced oxygen reduction in acid media. ACS Catal 7(3):1655–1663

    Article  CAS  Google Scholar 

  36. Serov A, Artyushkova K, Atanassov P (2014) Fe-N-C oxygen reduction fuel cell catalyst derived from carbendazim: synthesis, structure, and reactivity. Adv Eng Mater 4(10):1301735

    Article  Google Scholar 

  37. Liu S, Lu XF, Xiao J, Wang X, Lou XWD (2019) Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH. Angew Chem Int Ed Engl 58(39):13828–13833

    Article  CAS  PubMed  Google Scholar 

  38. Sing KS, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  Google Scholar 

  39. Saha D, Deng S (2010) Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. J Colloid Interface Sci 345(2):402–409

    Article  CAS  PubMed  Google Scholar 

  40. Liang W, Zhang Y, Wang X, Wu Y, Zhou X, Xiao J, Li Y, Wang H, Li Z (2017) Asphalt-derived high surface area activated porous carbons for the effective adsorption separation of ethane and ethylene. Chem Eng Sci 162:192–202

    Article  CAS  Google Scholar 

  41. Hu Z, Srinivasan MP, Ni Y (2000) Preparation of mesoporous high-surface-area activated carbon. Adv mater 12(1):62–65

    Article  CAS  Google Scholar 

  42. Saha D, Deng S (2009) Adsorption equilibria and kinetics of carbon monoxide on zeolite 5A, 13X, MOF-5, and MOF-177. J Chem Eng Data 54(8):2245–2250

    Article  CAS  Google Scholar 

  43. Yang F, Mao X, Ma M, Jiang C, Zhang P, Wang J, Qiang D, Zeng Z, Deng S (2020) Scalable strategy to fabricate single Cu atoms coordinated carbons for efficient electroreduction of CO2 to CO. Carbon 168:528–535

    Article  CAS  Google Scholar 

  44. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci 3(9):1311–1315

    Article  CAS  Google Scholar 

  45. Duan YX, Meng FL, Liu KH, Yi SS, Li SJ, Yan JM, Jiang Q (2018) Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv Mater 30(14):1706194

    Article  Google Scholar 

  46. Gong Q, Ding P, Xu M, Zhu X, Wang M, Deng J, Ma Q, Han N, Zhu Y, Lu J, Feng Z, Li Y, Zhou W, Li Y (2019) Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction. Nat Commun 10(1):1–10

    Article  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Natural Science Foundation of Jiangxi Province (No. 20192ACB21015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixia Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6810 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Chen, S., Yang, F. et al. Nickel Nanoparticles with Narrow Size Distribution Confined in Nitrogen-Doped Carbon for Efficient Reduction of CO2 to CO. Catal Lett 152, 600–609 (2022). https://doi.org/10.1007/s10562-021-03662-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03662-0

Keywords

Navigation