Skip to main content
Log in

Toward an Electrical Analog of the Cardiovascular System in Hemorrhage

  • Commentary
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Current quantitative descriptions of the cardiovascular system in hemorrhagic shock focus on pressure based metrics. This approach is often incomplete; overlooking the important role of tissue perfusion. Electrical analogs to the cardiovascular system may offer a more complete description of hemorrhage. Application of fundamental concepts in electrical circuit theory (i.e.; Kirchhoff’s Voltage Law and Ohm’s Law) to analogs of the cardiovascular system offers a more refined description of this complex process. This manuscript hopes to serve as a starting point for a more mathematically robust, and clinically relevant description of hemorrhagic shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  1. Cecconi, M., N. Arulkumaran, J. Kilic, C. Ebm, and A. Rhodes. Update on hemodynamic monitoring and management in septic patients. Minerva Anestesiol. 80(6):701–711, 2014.

    CAS  PubMed  Google Scholar 

  2. Chesnut, R. M., L. F. Marshall, M. R. Klauber, B. A. Blunt, N. Baldwin, H. M. Eisenberg, et al. The role of secondary brain injury in determining outcome from severe head injury. J. Trauma 34(2):216–222, 1993.

    Article  CAS  Google Scholar 

  3. Cousins, W. G. P. Boundary conditions for hemodynamics: the structured tree revisited. J. Comput. Phys. 231:6086–6096, 2012.

    Article  Google Scholar 

  4. Cowell, E. M. Nature and treatment of wound shock and allies conditions. JAMA 70(9):607–621, 1918.

    Article  Google Scholar 

  5. Csete, M. E., and J. C. Doyle. Reverse engineering of biological complexity. Science 295(5560):1664–1669, 2002.

    Article  CAS  Google Scholar 

  6. Dobson, G. P., and H. L. Letson. Adenosine, lidocaine, and Mg2+ (ALM): from cardiac surgery to combat casualty care–teaching old drugs new tricks. J. Trauma Acute Care Surg. 80(1):135–145, 2016.

    Article  CAS  Google Scholar 

  7. Duanmu, Z., M. Yin, X. Fan, X. Yang, and X. Luo. A patient-specific lumped-parameter model of coronary circulation. Sci. Rep. 8(1):874, 2018.

    Article  Google Scholar 

  8. Dutton, R. P., C. F. Mackenzie, and T. M. Scalea. Hypotensive resuscitation during active hemorrhage: impact on in-hospital mortality. J. Trauma 52(6):1141–1146, 2002.

    Article  Google Scholar 

  9. Grodins, F. S. Integrative cardiovascular physiology: a mathematical synthesis of cardiac and blood vessel hemodynamics. Q. Rev. Biol. 34(2):93–116, 1959.

    Article  CAS  Google Scholar 

  10. Guyton, A. C., T. G. Coleman, and H. J. Granger. Circulation: overall regulation. Annu. Rev. Physiol. 34:13–46, 1972.

    Article  CAS  Google Scholar 

  11. How, R. A., J. J. Glaser, L. J. Schaub, D. M. Fryer, K. M. Ozuna, C. G. Morgan, et al. Prehospital adenosine, lidocaine, and magnesium has inferior survival compared with tactical combat casualty care resuscitation in a porcine model of prolonged hemorrhagic shock. J. Trauma Acute Care Surg. 87(1):68–75, 2019.

    Article  CAS  Google Scholar 

  12. Huygh, J., Y. Peeters, J. Bernards, and M. L. Malbrain. Hemodynamic monitoring in the critically ill: an overview of current cardiac output monitoring methods. F1000Res 2016. https://doi.org/10.12688/f1000research.8991.1.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kiran Kumar, Y., S. B. Mehta, and M. Ramachandra. Simulation study of hemodynamic in bifurcations for cerebral arteriovenous malformation using electrical analogy. J. Biomed. Phys. Eng. 7(2):143–154, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Letson, H. L., and G. P. Dobson. Correction of acute traumatic coagulopathy with small-volume 7.5% NaCl adenosine, lidocaine, and Mg2+ occurs within 5 minutes: a ROTEM analysis. J. Trauma Acute Care Surg. 78(4):773–783, 2015.

    Article  CAS  Google Scholar 

  15. Letson, H., and G. Dobson. Adenosine, lidocaine and Mg2+ (ALM) fluid therapy attenuates systemic inflammation, platelet dysfunction and coagulopathy after non-compressible truncal hemorrhage. PLoS ONE 12(11):e0188144, 2017.

    Article  Google Scholar 

  16. Letson, H. L., and G. P. Dobson. Adenosine, lidocaine, and Mg2+ (ALM) resuscitation fluid protects against experimental traumatic brain injury. J. Trauma Acute Care Surg. 84(6):908–916, 2018.

    Article  CAS  Google Scholar 

  17. Marik, P. E. Obituary: pulmonary artery catheter 1970 to 2013. Ann. Intensive Care 3(1):38, 2013.

    Article  Google Scholar 

  18. Naik, K. B. Mathematical modeling and simulation of human cardiovascular system. Surat: Veer Narmad South Gujarat University: Veer Narmad South Gujarat University, 2015.

    Google Scholar 

  19. Naik, K. B. P. Mathematical modeling of human cardiovascular system: a lumped parameter approach and simulation. Int. Sch. Sci. Res. Innov. 11(2):73–84, 2017.

    Google Scholar 

  20. Paradis, N. A., G. B. Martin, J. Rosenberg, E. P. Rivers, M. G. Goetting, T. J. Appleton, et al. The effect of standard- and high-dose epinephrine on coronary perfusion pressure during prolonged cardiopulmonary resuscitation. JAMA 265(9):1139–1144, 1991.

    Article  CAS  Google Scholar 

  21. Ristagno, G., W. Tang, L. Huang, A. Fymat, Y. T. Chang, S. Sun, et al. Epinephrine reduces cerebral perfusion during cardiopulmonary resuscitation. Crit. Care Med. 37(4):1408–1415, 2009.

    Article  CAS  Google Scholar 

  22. Sakka, S. G. Hemodynamic monitoring in the critically ill patient—current status and perspective. Front. Med. 2:44, 2015.

    Article  Google Scholar 

  23. Tobin, J. M., R. P. Dutton, J. F. Pittet, and D. Sharma. Hypotensive resuscitation in a head-injured multi-trauma patient. J. Crit. Care 29(2):313, 2014.

    Article  Google Scholar 

  24. Vodovotz, Y., M. Csete, J. Bartels, S. Chang, and G. An. Translational systems biology of inflammation. PLoS Comput. Biol. 4(4):e1000014, 2008.

    Article  Google Scholar 

  25. Walsh, M., P. J. Devereaux, A. X. Garg, A. Kurz, A. Turan, R. N. Rodseth, et al. Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119(3):507–515, 2013.

    Article  Google Scholar 

  26. Westerhof, N., F. Bosman, C. J. De Vries, and A. Noordergraaf. Analog studies of the human systemic arterial tree. J. Biomech. 2(2):121–143, 1969.

    Article  CAS  Google Scholar 

Download references

Funding

None.

Conflict of interest

All authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua M. Tobin.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tobin, J.M. Toward an Electrical Analog of the Cardiovascular System in Hemorrhage. Cardiovasc Eng Tech 12, 526–529 (2021). https://doi.org/10.1007/s13239-021-00545-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-021-00545-8

Keywords

Navigation