Skip to main content
Log in

Melatonin Improves Reduced Activities of Membrane ATPases and Preserves Ultrastructure of Gray and White Matter in the Rat Brain Ischemia/Reperfusion Model

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Ischemia/reperfusion (I/R) is among the most frequent neurological problems and early intervention to limit the damage is crucial in decreasing mortality and morbidity. Based on reports regarding beneficial effects of melatonin, we investigated its impact on Na+-K+/Mg2+ ATPase and Ca2+/Mg2+ ATPase activities and ultrastructure of gray and white matter in the rat forebrain I/R model. Adult Wistar-albino rats (n = 78), were randomized into control, ischemia (I), ischemia/reperfusion (I/R), low (I/R + melatonin 400 µg/kg), moderate (I/R + melatonin 1200 µg/kg), and high (I/R + melatonin 2400 µg/kg) dose melatonin. Two-vessel occlusion combined with hypotension (15 min) induced ischemia and reperfusion (75 min) achieved by blood reinfusion were performed. Activities of the membrane-bound enzyme, brain malondialdehyde levels, and brain matter ultrastructure were examined in frontoparietal cortices. Melatonin lowered production of malondialdehyde in a dose-dependently. The enzyme activities attenuated under I and I/R, improved with melatonin treatment. I and I/R severely disturbed gray and white matter morphology. Melatonin, in all applied doses, decreased ultrastructural damages in both gray and white matter. Favorable effects of melatonin can be attributed to its antioxidant properties suggesting that it could be a promising neuroprotective agent against I/R injury being effective both for gray and white matter due to favorable biological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

EEG:

electroencephalography

I/R:

ischemia/reperfusion

MABP:

mean arterial blood pressure

MDA:

malondialdehyde

References

  1. Lee, R. H. C., Lee, M. H. H., Wu, C. Y. C., Couto, E. S. A., Possoit, H. E., et al. (2018) Cerebral ischemia and neuroregeneration, Neural Regen. Res., 13, 373-385, https://doi.org/10.4103/1673-5374.228711.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Granger, D. N., and Kvietys, P. R. (2015) Reperfusion injury and reactive oxygen species: the evolution of a concept, Redox Biol., 6, 524-551, https://doi.org/10.1016/j.redox.2015.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, Y., and Yang, G.-Y. (2017) Pathophysiology of ischemic stroke, in Translational Research in Stroke (Lapchak, P. A., and Yang, G.-Y., eds.) 1st Edn., Springer Singapore, pp. 51-75.

  4. Kalogeris, T., Baines, C. P., Krenz, M., and Korthuis, R. J. (2012) Cell biology of ischemia/reperfusion injury, Int. Rev. Cell. Mol. Biol., 298, 229-317, https://doi.org/10.1016/b978-0-12-394309-5.00006-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Godinho, J., de Sa-Nakanishi, A. B., Moreira, L. S., de Oliveira, R. M. W., Huzita, C. H., et al. (2018) Ethyl-acetate fraction of Trichilia catigua protects against oxidative stress and neuroinflammation after cerebral ischemia/reperfusion, J. Ethnopharmacol., 221, 109-118, https://doi.org/10.1016/j.jep.2018.04.018.

    Article  CAS  PubMed  Google Scholar 

  6. Phaniendra, A., Jestadi, D. B., and Periyasamy, L. (2015) Free radicals: properties, sources, targets, and their implication in various diseases, Indian J. Clin. Biochem., 30, 11-26, https://doi.org/10.1007/s12291-014-0446-0.

    Article  CAS  PubMed  Google Scholar 

  7. Rodrigo, R., Fernández-Gajardo, R., Gutiérrez, R., Matamala, J. M., Carrasco, R., et al. (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities, CNS Neurol. Disord. Drug Targets, 12, 698-714, https://doi.org/10.2174/1871527311312050015.

    Article  CAS  PubMed  Google Scholar 

  8. Weston, R. M., Jones, N. M., Jarrott, B., and Callaway, J. K. (2007) Inflammatory cell infiltration after endothelin-1-induced cerebral ischemia: histochemical and myeloperoxidase correlation with temporal changes in brain injury, J. Cereb. Blood Flow Metab., 27, 100-114, https://doi.org/10.1038/sj.jcbfm.9600324.

    Article  CAS  PubMed  Google Scholar 

  9. Ma, Z., Xin, Z., Di, W., Yan, X., Li, X., et al. (2017) Melatonin and mitochondrial function during ischemia/reperfusion injury, Cell. Mol. Life Sci., 74, 3989-3998, https://doi.org/10.1007/s00018-017-2618-6.

    Article  CAS  PubMed  Google Scholar 

  10. Hu, S., Zhu, P., Zhou, H., Zhang, Y., and Chen, Y. (2018) Melatonin-induced protective effects on cardiomyocytes against reperfusion injury partly through modulation of IP3R and SERCA2a via activation of ERK1, Arq. Bras. Cardiol., 110, 44-51, https://doi.org/10.5935/abc.20180008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, Y. W., Chen, T. Y., Hung, C. Y., Tai, S. H., Huang, S. Y., et al. (2018) Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress, Int. J. Mol. Med., 42, 182-192, https://doi.org/10.3892/ijmm.2018.3607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blanco, S., Hernández, R., Franchelli, G., Ramos-Álvarez, M. M., and Peinado, M. (2017) Melatonin influences NO/NOS pathway and reduces oxidative and nitrosative stress in a model of hypoxic-ischemic brain damage, Nitric Oxide, 62, 32-43, https://doi.org/10.1016/j.niox.2016.12.001.

    Article  CAS  PubMed  Google Scholar 

  13. Yawno, T., Mahen, M., Li, J., Fahey, M. C., Jenkin, G., and Miller, S. L. (2017) The beneficial effects of melatonin administration following hypoxia-ischemia in preterm fetal sheep, Front. Cell Neurosci., 11, 296, https://doi.org/10.3389/fncel.2017.00296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chakravarty, S., and Rizvi, S. I. (2011) Circadian modulation of sodium-potassium ATPase and sodium – proton exchanger in human erythrocytes: in vitro effect of melatonin, Cell Mol. Biol. (Noisy-le-Grand), 57, 80-86.

    CAS  Google Scholar 

  15. Toklu, H. Z., Deniz, M., Yuksel, M., and Keyer-Uysal, M. (2009) The protective effect of melatonin and amlodipine against cerebral ischemia/reperfusion-induced oxidative brain injury in rats, Marmara Med. J., 22, 34-44.

    Google Scholar 

  16. Hoffmann, U., Sheng, H., Ayata, C., and Warner, D. S. (2016) Anesthesia in experimental stroke research, Transl. Stroke Res., 7, 358-367, https://doi.org/10.1007/s12975-016-0491-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith, M. L., Bendek, G., Dahlgren, N., Rosén, I., Wieloch, T., and Siesjö, B. K. (1984) Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model, Acta Neurol. Scand., 69, 385-401, https://doi.org/10.1111/j.1600-0404.1984.tb07822.x.

    Article  CAS  PubMed  Google Scholar 

  18. Ildan, F., Oner, A., Polat, S., Isbir, T., Göcer, A. I., et al. (1995) Correlation of alterations on Na+-K+/Mg+2 ATPase activity, lipid peroxidation and ultrastructural findings following experimental spinal cord injury with and without intravenous methylprednisolone treatment, Neurosurg. Rev., 18, 35-44, https://doi.org/10.1007/bf00416476.

    Article  CAS  PubMed  Google Scholar 

  19. Ildan, F., Göçer, A. I., Tuna, M., Polat, S., Kaya, M., et al. (2001) The effects of the pre-treatment of intravenous nimodipine on Na+-K+/Mg+2 ATPase, Ca+2/Mg+2 ATPase, lipid peroxidation and early ultrastructural findings following middle cerebral artery occlusion in the rat, Neurol. Res., 23, 96-104, https://doi.org/10.1179/016164101101198208.

    Article  CAS  PubMed  Google Scholar 

  20. Reading, H. W., and Isbir, T. (1980) The role of cation-activated ATPases in transmitter release from the rat iris, Q. J. Exp. Physiol. Cogn. Med. Sci., 65, 105-116, https://doi.org/10.1113/expphysiol.1980.sp002495.

    Article  CAS  PubMed  Google Scholar 

  21. Peterson, M. E., Daniel, R. M., Danson, M. J., and Eisenthal, R. (2007) The dependence of enzyme activity on temperature: determination and validation of parameters, Biochem. J., 402, 331-337, https://doi.org/10.1042/bj20061143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Atkinson, A., Gatenby, A. D., and Lowe, A. G. (1973) The determination of inorganic orthophosphate in biological systems, Biochim. Biophys. Acta, 320, 195-204, https://doi.org/10.1016/0304-4165(73)90178-5.

    Article  CAS  PubMed  Google Scholar 

  23. Reading, H. W., and Isbir, T. (1979) Action of lithium on ATPases in the rat iris and visual cortex, Biochem. Pharmacol., 28, 3471-3474, https://doi.org/10.1016/0006-2952(79)90089-3.

    Article  CAS  PubMed  Google Scholar 

  24. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275.

    Article  CAS  Google Scholar 

  25. Görgülü, A., Palaoğlu, S., Ismailoğlu, O., Tuncel, M., Sürücü, M. T., et al. (2001) Effect of melatonin on cerebral edema in rats, Neurosurgery, 49, 1434-1442, https://doi.org/10.1097/00006123-200112000-00024.

    Article  PubMed  Google Scholar 

  26. Kaptanoglu, E., Palaoglu, S., Surucu, H. S., Hayran, M., and Beskonakli, E. (2002) Ultrastructural scoring of graded acute spinal cord injury in the rat, J. Neurosurg., 97, 49-56, https://doi.org/10.3171/spi.2002.97.1.0049.

    Article  PubMed  Google Scholar 

  27. Lee, M. Y., Kuan, Y. H., Chen, H. Y., Chen, T. Y., Chen, S. T., et al. (2007) Intravenous administration of melatonin reduces the intracerebral cellular inflammatory response following transient focal cerebral ischemia in rats, J. Pineal Res., 42, 297-309, https://doi.org/10.1111/j.1600-079X.2007.00420.x.

    Article  CAS  PubMed  Google Scholar 

  28. Ramis, M. R., Esteban, S., Miralles, A., Tan, D. X., and Reiter, R. J. (2015) Protective effects of melatonin and mitochondria-targeted antioxidants against oxidative stress: a review, Curr. Med. Chem., 22, 2690-2711, https://doi.org/10.2174/0929867322666150619104143.

    Article  CAS  PubMed  Google Scholar 

  29. Cervantes, M., Moralí, G., and Letechipía-Vallejo, G. (2008) Melatonin and ischemia-reperfusion injury of the brain, J. Pineal Res., 45, 1-7, https://doi.org/10.1111/j.1600-079X.2007.00551.x.

    Article  CAS  PubMed  Google Scholar 

  30. Gim, S. A., and Koh, P. O. (2015) Melatonin attenuates hepatic ischemia through mitogen-activated protein kinase signaling, J. Surg. Res., 198, 228-236, https://doi.org/10.1016/j.jss.2015.05.043.

    Article  CAS  PubMed  Google Scholar 

  31. Santofimia-Castaño, P., Clea Ruy, D., Garcia-Sanchez, L., Jimenez-Blasco, D., Fernandez-Bermejo, M., et al. (2015) Melatonin induces the expression of Nrf2-regulated antioxidant enzymes via PKC and Ca2+ influx activation in mouse pancreatic acinar cells, Free Radic. Biol. Med., 87, 226-236, https://doi.org/10.1016/j.freeradbiomed.2015.06.033.

    Article  CAS  PubMed  Google Scholar 

  32. Reiter, R. J., Sainz, R. M., Lopez-Burillo, S., Mayo, J. C., Manchester, L. C., and Tan, D. X. (2003) Melatonin ameliorates neurologic damage and neurophysiologic deficits in experimental models of stroke, Ann. N.Y. Acad. Sci., 993, 35-47, https://doi.org/10.1111/j.1749-6632.2003.tb07509.x.

    Article  CAS  PubMed  Google Scholar 

  33. Tütüncüler, F., Eskiocak, S., Başaran, U. N., Ekuklu, G., Ayvaz, S., and Vatansever, U. (2005) The protective role of melatonin in experimental hypoxic brain damage, Pediatr. Int., 47, 434-439, https://doi.org/10.1111/j.1442-200x.2005.02085.x.

    Article  PubMed  Google Scholar 

  34. Reiter, R. J., Tan, D. X., Leon, J., Kilic, U., and Kilic, E. (2005) When melatonin gets on your nerves: its beneficial actions in experimental models of stroke, Exp. Biol. Med. (Maywood), 230, 104-117, https://doi.org/10.1177/153537020523000205.

    Article  CAS  Google Scholar 

  35. Tan, D. X., Manchester, L. C., Terron, M. P., Flores, L. J., and Reiter, R. J. (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species?, J. Pineal Res., 42, 28-42, https://doi.org/10.1111/j.1600-079X.2006.00407.x.

    Article  CAS  PubMed  Google Scholar 

  36. De Lores Arnaiz, G. R., and Ordieres, M. G. (2014) Brain Na+,K+-ATPase activity in aging and disease, Int. J. Biomed. Sci., 10, 85-102.

    PubMed  PubMed Central  Google Scholar 

  37. Harris, J. J., and Attwell, D. (2012) The energetics of CNS white matter, J. Neurosci., 32, 356-371, https://doi.org/10.1523/jneurosci.3430-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Domercq, M., Sánchez-Gómez, M. V., Sherwin, C., Etxebarria, E., Fern, R., and Matute, C. (2007) System xc- and glutamate transporter inhibition mediates microglial toxicity to oligodendrocytes, J. Immunol., 178, 6549-6556, https://doi.org/10.4049/jimmunol.178.10.6549.

    Article  CAS  PubMed  Google Scholar 

  39. Micu, I., Jiang, Q., Coderre, E., Ridsdale, A., Zhang, L., et al. (2006) NMDA receptors mediate calcium accumulation in myelin during chemical ischaemia, Nature, 439, 988-992, https://doi.org/10.1038/nature04474.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, Y., Liu, G., Hong, D., Chen, F., Ji, X., and Cao, G. (2016) White matter injury in ischemic stroke, Prog. Neurobiol., 141, 45-60, https://doi.org/10.1016/j.pneurobio.2016.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Matute, C., Domercq, M., Pérez-Samartín, A., and Ransom, B. R. (2013) Protecting white matter from stroke injury, Stroke, 44, 1204-1211, https://doi.org/10.1161/strokeaha.112.658328.

    Article  PubMed  Google Scholar 

  42. Pappas, B. A., Davidson, C. M., Bennett, S. A., de la Torre, J. C., Fortin, T., and Tenniswood, M. P. (1997) Chronic ischemia: memory impairment and neural pathology in the rat, Ann. N.Y. Acad. Sci., 826, 498-501, https://doi.org/10.1111/j.1749-6632.1997.tb48512.x.

    Article  CAS  PubMed  Google Scholar 

  43. Sozmen, E. G., Kolekar, A., Havton, L. A., and Carmichael, S. T. (2009) A white matter stroke model in the mouse: axonal damage, progenitor responses and MRI correlates, J. Neurosci. Methods, 180, 261-272, https://doi.org/10.1016/j.jneumeth.2009.03.017.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rossi, D. J., Brady, J. D., and Mohr, C. (2007) Astrocyte metabolism and signaling during brain ischemia, Nat. Neurosci., 10, 1377-1386, https://doi.org/10.1038/nn2004.

    Article  CAS  PubMed  Google Scholar 

  45. Nedergaard, M., and Dirnagl, U. (2005) Role of glial cells in cerebral ischemia, Glia, 50, 281-286, https://doi.org/10.1002/glia.20205.

    Article  PubMed  Google Scholar 

  46. Sekerdag, E., Solaroglu, I., and Gursoy-Ozdemir, Y. (2018) Cell death mechanisms in stroke and novel molecular and cellular treatment options, Curr. Neuropharmacol., 16, 1396-1415, https://doi.org/10.2174/1570159x16666180302115544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. Z. Dicle Balkancı, MD, Retired Professor of Physiology, for her critical contributions to the study and to Prof. A. Ergun Karaağaoğlu PhD, Professor of Biostatistics, for his involvement in statistical analysis.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Meltem Tuncer and Bilge Pehlivanoğlu. Ultrastructural analysis was performed by Selçuk Sürücü and Biochemical measurements were carried out by Turgay İsbir. The first draft of the manuscript was written by Meltem Tuncer and Bilge Pehlivanoğlu; all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Meltem Tuncer.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuncer, M., Pehlivanoglu, B., Sürücü, S.H. et al. Melatonin Improves Reduced Activities of Membrane ATPases and Preserves Ultrastructure of Gray and White Matter in the Rat Brain Ischemia/Reperfusion Model. Biochemistry Moscow 86, 540–550 (2021). https://doi.org/10.1134/S0006297921050035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921050035

Keywords

Navigation