Skip to main content
Log in

Electrical Stimulation of Cultured Myotubes in vitro as a Model of Skeletal Muscle Activity: Current State and Future Prospects

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Skeletal muscles comprise more than a third of human body mass and critically contribute to regulation of body metabolism. Chronic inactivity reduces metabolic activity and functional capacity of muscles, leading to metabolic and other disorders, reduced life quality and duration. Cellular models based on progenitor cells isolated from human muscle biopsies and then differentiated into mature fibers in vitro can be used to solve a wide range of experimental tasks. The review discusses the aspects of myogenesis dynamics and regulation, which might be important in the development of an adequate cell model. The main function of skeletal muscle is contraction; therefore, electrical stimulation is important for both successful completion of myogenesis and in vitro modeling of major processes induced in the skeletal muscle by acute or regular physical exercise. The review analyzes the drawbacks of such cellular model and possibilities for its optimization, as well as the prospects for its further application to address fundamental aspects of muscle physiology and biochemistry and explore cellular and molecular mechanisms of metabolic diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

EMSC:

embryonic muscle stem cell

GLUT4:

insulin-regulated glucose transporter 4

MYOG:

myogenin

Pax3/Pax7:

paired box transcription factors 3/7

SC:

satellite cell

TNF1:

tumor necrosis factor 1

References

  1. DeFronzo, R. A., Gunnarsson, R., Bjorkman, O., Olsson, M., and Wahren, J. (1985) Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus, J. Clin. Invest., 76, 149-155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sylow, L., Kleinert, M., Richter, E. A., and Jensen, T. E. (2017) Exercise-stimulated glucose uptake – regulation and implications for glycaemic control, Nat. Rev. Endocrinol., 13, 133-148.

    Article  CAS  PubMed  Google Scholar 

  3. Frayn, K. N. (2003) The glucose-fatty acid cycle: a physiological perspective, Biochem. Soc. Trans., 31, 1115-1119.

    Article  CAS  PubMed  Google Scholar 

  4. Agudelo, L. Z., Femenia, T., Orhan, F., Porsmyr-Palmertz, M., Goiny, M., et al. (2014) Skeletal muscle PGC-1alpha1 modulates kynurenine metabolism and mediates resilience to stress-induced depression, Cell, 159, 33-45.

    Article  CAS  PubMed  Google Scholar 

  5. Pedersen, B. K., and Febbraio, M. A. (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ, Nat. Rev. Endocrinol., 8, 457-465.

    Article  CAS  PubMed  Google Scholar 

  6. Demontis, F., Piccirillo, R., Goldberg, A. L., and Perrimon, N. (2013) The influence of skeletal muscle on systemic aging and lifespan, Aging Cell, 12, 943-949.

    Article  CAS  PubMed  Google Scholar 

  7. Lanza, I. R., Short, D. K., Short, K. R., Raghavakaimal, S., Basu, R., et al. (2008) Endurance exercise as a countermeasure for aging, Diabetes, 57, 2933-2942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vorotnikov, A. V., Stafeev, I. S., Menshikov, M. Y., Shestakova, M. V., and Parfyonova, Y. V. (2019) Latent inflammation and defect in adipocyte renewal as a mechanism of obesity-associated insulin resistance, Biochemistry (Moscow), 84, 1329-1345.

    Article  CAS  Google Scholar 

  9. Pillon, N. J., Gabriel, B. M., Dollet, L., Smith, J. A. B., Sardon, P. L., et al. (2020) Transcriptomic profiling of skeletal muscle adaptations to exercise and inactivity, Nat. Commun., 11, 470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Makhnovskii, P. A., Bokov, R. O., Kolpakov, F. A., and Popov, D. V. (2021) Transcriptomic signatures and upstream regulation in human skeletal muscle adapted to disuse and aerobic exercise, Int. J. Mol. Sci., 22, 1208, https://doi.org/10.3390/ijms22031208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schnyder, S., and Handschin, C. (2015) Skeletal muscle as an endocrine organ: PGC-1alpha, myokines and exercise, Bone, 80, 115-125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Whitham, M., Parker, B. L., Friedrichsen, M., Hingst, J. R., Hjorth, M., et al. (2018) Extracellular vesicles provide a means for tissue crosstalk during exercise, Cell. Metab., 27, 237-251.

    Article  CAS  PubMed  Google Scholar 

  13. Lee, D. C., Brellenthin, A. G., Thompson, P. D., Sui, X., Lee, I. M., and Lavie, C. J. (2017) Running as a key lifestyle medicine for longevity, Prog. Cardiovasc. Dis., 60, 45-55.

    Article  PubMed  Google Scholar 

  14. Yoshida, Y., Jain, S. S., McFarlan, J. T., Snook, L. A., Chabowski, A., and Bonen, A. (2013) Exercise- and training-induced upregulation of skeletal muscle fatty acid oxidation are not solely dependent on mitochondrial machinery and biogenesis, J. Physiol., 591, 4415-4426.

    Article  CAS  PubMed  Google Scholar 

  15. Chambers, T. L., Burnett, T. R., Raue, U., Lee, G. A., Finch, W. H., et al. (2020) Skeletal muscle size, function, and adiposity with lifelong aerobic exercise, J. Appl. Physiol. (1985), 128, 368-378.

    Article  CAS  Google Scholar 

  16. Gifford, J. R., Weavil, J. C., and Nelson, A. D. (2016) Symmorphosis in patients with chronic heart failure? J. Appl. Physiol. (1985), 121, 1039.

    Article  Google Scholar 

  17. Kovanen, V., and Suominen, H. (1987) Effects of age and life-time physical training on fibre composition of slow and fast skeletal muscle in rats, Pflugers Arch., 408, 543-551.

    Article  CAS  PubMed  Google Scholar 

  18. Schantz, P. G., and Dhoot, G. K. (1987) Coexistence of slow and fast isoforms of contractile and regulatory proteins in human skeletal muscle fibres induced by endurance training, Acta Physiol. Scand., 131, 147-154.

    Article  CAS  PubMed  Google Scholar 

  19. Schiaffino, S., and Reggiani, C. (2011) Fiber types in mammalian skeletal muscles, Physiol. Rev., 91, 1447-1531.

    Article  CAS  PubMed  Google Scholar 

  20. McCarthy, J. J., Andrews, J. L., McDearmon, E. L., Campbell, K. S., Barber, B. K., et al. (2007) Identification of the circadian transcriptome in adult mouse skeletal muscle, Physiol. Genomics, 31, 86-95.

    Article  CAS  PubMed  Google Scholar 

  21. Miller, B. H., McDearmon, E. L., Panda, S., Hayes, K. R., Zhang, J., et al. (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation, Proc. Natl. Acad. Sci. USA, 104, 3342-3347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perrin, L., Loizides-Mangold, U., Chanon, S., Gobet, C., Hulo, N., et al. (2018) Transcriptomic analyses reveal rhythmic and CLOCK-driven pathways in human skeletal muscle, Elife, 7, e34114, https://doi.org/10.7554/eLife.34114.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Popov, D. V., Makhnovskii, P. A., Shagimardanova, E. I., Gazizova, G. R., Lysenko, E. A., et al. (2019) Contractile activity-specific transcriptome response to acute endurance exercise and training in human skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 316, e605-e614.

    Article  CAS  PubMed  Google Scholar 

  24. Bentzinger, C. F., Wang, Y. X., and Rudnicki, M. A. (2012) Building muscle: molecular regulation of myogenesis, Cold Spring Harb. Perspect. Biol., 4, a008342, https://doi.org/10.1101/cshperspect.a008342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chal, J., and Pourquie, O. (2017) Making muscle: skeletal myogenesis in vivo and in vitro, Development, 144, 2104-2122.

    Article  CAS  PubMed  Google Scholar 

  26. Tajbakhsh, S. (2009) Skeletal muscle stem cells in developmental versus regenerative myogenesis, J. Intern. Med., 266, 372-389.

    Article  CAS  PubMed  Google Scholar 

  27. Zammit, P. S. (2017) Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis, Semin. Cell Dev. Biol., 72, 19-32.

    Article  CAS  PubMed  Google Scholar 

  28. Asfour, H. A., Allouh, M. Z., and Said, R. S. (2018) Myogenic regulatory factors: the orchestrators of myogenesis after 30 years of discovery, Exp. Biol. Med. (Maywood.), 243, 118-128.

    Article  CAS  Google Scholar 

  29. Buckingham, M., and Relaix, F. (2015) PAX3 and PAX7 as upstream regulators of myogenesis, Semin. Cell Dev. Biol., 44, 115-125.

    Article  CAS  PubMed  Google Scholar 

  30. Comai, G., and Tajbakhsh, S. (2014) Molecular and cellular regulation of skeletal myogenesis, Curr. Top. Dev. Biol., 110, 1-73.

    Article  PubMed  Google Scholar 

  31. Olguin, H. C., and Pisconti, A. (2012) Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions, J. Cell. Mol. Med., 16, 1013-1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hutcheson, D. A., and Kardon, G. (2009) Genetic manipulations reveal dynamic cell and gene functions: Cre-ating a new view of myogenesis, Cell Cycle, 8, 3675-3678.

    Article  CAS  PubMed  Google Scholar 

  33. Chaillou, T., and Lanner, J. T. (2016) Regulation of myogenesis and skeletal muscle regeneration: effects of oxygen levels on satellite cell activity, FASEB J., 30, 3929-3941.

    Article  CAS  PubMed  Google Scholar 

  34. Wagatsuma, A., and Sakuma, K. (2013) Mitochondria as a potential regulator of myogenesis, Sci. World J., 2013, 593267.

    Article  CAS  Google Scholar 

  35. Costamagna, D., Costelli, P., Sampaolesi, M., and Penna, F. (2015) Role of inflammation in muscle homeostasis and myogenesis, Mediators Inflamm., 2015, 805172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Ge, Y., and Chen, J. (2012) Mammalian target of rapamycin (mTOR) signaling network in skeletal myogenesis, J. Biol. Chem., 287, 43928-43935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Furuichi, Y., Kawabata, Y., Aoki, M., Mita, Y., Fujii, N. L., and Manabe, Y. (2021) Excess glucose impedes the proliferation of skeletal muscle satellite cells under adherent culture conditions, Front. Cell. Dev. Biol., 9, 640399.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Grabiec, K., Gajewska, M., Milewska, M., Blaszczyk, M., and Grzelkowska-Kowalczyk, K. (2014) The influence of high glucose and high insulin on mechanisms controlling cell cycle progression and arrest in mouse C2C12 myoblasts: the comparison with IGF-I effect, J. Endocrinol. Invest., 37, 233-245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Luo, W., Ai, L., Wang, B. F., and Zhou, Y. (2019) High glucose inhibits myogenesis and induces insulin resistance by down-regulating AKT signaling, Biomed. Pharmacother., 120, 109498.

    Article  CAS  PubMed  Google Scholar 

  40. Hunt, L. C., Xu, B., Finkelstein, D., Fan, Y., Carroll, P. A., et al. (2015) The glucose-sensing transcription factor MLX promotes myogenesis via myokine signaling, Genes Dev., 29, 2475-2489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fulco, M., Cen, Y., Zhao, P., Hoffman, E. P., McBurney, M. W., Sauve, A. A., and Sartorelli, V. (2008) Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt, Dev. Cell, 14, 661-673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Elkalaf, M., Andel, M., and Trnka, J. (2013) Low glucose but not galactose enhances oxidative mitochondrial metabolism in C2C12 myoblasts and myotubes, PLoS One, 8, e70772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Costford, S. R., Crawford, S. A., Dent, R., McPherson, R., and Harper, M. E. (2009) Increased susceptibility to oxidative damage in post-diabetic human myotubes, Diabetologia, 52, 2405-2415.

    Article  CAS  PubMed  Google Scholar 

  44. Aguer, C., Gambarotta, D., Mailloux, R. J., Moffat, C., Dent, R., et al. (2011) Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells, PLoS One, 6, e28536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Krauss, R. S., Joseph, G. A., and Goel, A. J. (2017) Keep your friends close: cell–cell contact and skeletal myogenesis, Cold Spring Harb. Perspect. Biol., 9, a029298.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Aas, V., Torbla, S., Andersen, M. H., Jensen, J., and Rustan, A. C. (2002) Electrical stimulation improves insulin responses in a human skeletal muscle cell model of hyperglycemia, Ann. N. Y. Acad. Sci., 967, 506-515.

    Article  CAS  PubMed  Google Scholar 

  47. Carter, S., and Solomon, T. P. J. (2019) In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments, Pflugers Arch., 471, 413-429.

    Article  CAS  PubMed  Google Scholar 

  48. Nikolic, N., Gorgens, S. W., Thoresen, G. H., Aas, V., Eckel, J., and Eckardt, K. (2017) Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise – possibilities and limitations, Acta Physiol. (Oxf), 220, 310-331.

    Article  CAS  Google Scholar 

  49. Nikolic, N., and Aas, V. (2019) Electrical pulse stimulation of primary human skeletal muscle cells, Methods Mol. Biol., 1889, 17-24.

    Article  CAS  PubMed  Google Scholar 

  50. Valdes, J. A., Gaggero, E., Hidalgo, J., Leal, N., Jaimovich, E., and Carrasco, M. A. (2008) NFAT activation by membrane potential follows a calcium pathway distinct from other activity-related transcription factors in skeletal muscle cells, Am. J. Physiol. Cell Physiol., 294, C715-C725.

    Article  CAS  PubMed  Google Scholar 

  51. Sidorenko, S., Klimanova, E., Milovanova, K., Lopina, O. D., Kapilevich, L. V., et al. (2018) Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: role of Ca(2+)i-mediated and Ca(2+)i-independent signaling and elevated [Na(+)]i/[K(+)]i ratio, Cell Calcium, 76, 72-86.

    Article  CAS  PubMed  Google Scholar 

  52. Sciancalepore, M., Coslovich, T., Lorenzon, P., Ziraldo, G., and Taccola, G. (2015) Extracellular stimulation with human “noisy” electromyographic patterns facilitates myotube activity, J. Muscle Res. Cell Motil., 36, 349-357.

    Article  CAS  PubMed  Google Scholar 

  53. Fujita, H., Nedachi, T., and Kanzaki, M. (2007) Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes, Exp. Cell Res., 313, 1853-1865.

    Article  CAS  PubMed  Google Scholar 

  54. Nikolic, N., Bakke, S. S., Kase, E. T., Rudberg, I., Flo, H., et al. (2012) Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise, PLoS One, 7, e33203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lambernd, S., Taube, A., Schober, A., Platzbecker, B., Gorgens, S. W., et al. (2012) Contractile activity of human skeletal muscle cells prevents insulin resistance by inhibiting pro-inflammatory signalling pathways, Diabetologia, 55, 1128-1139.

    Article  CAS  PubMed  Google Scholar 

  56. Brown, A. E., Jones, D. E., Walker, M., and Newton, J. L. (2015) Abnormalities of AMPK activation and glucose uptake in cultured skeletal muscle cells from individuals with chronic fatigue syndrome, PLoS One, 10, e0122982.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Li, Z., Yue, Y., Hu, F., Zhang, C., Ma, X., et al. (2018) Electrical pulse stimulation induces GLUT4 translocation in C2C12 myotubes that depends on Rab8A, Rab13, and Rab14, Am. J. Physiol. Endocrinol. Metab., 314, E478-E493.

    Article  PubMed  CAS  Google Scholar 

  58. Chen, W., Nyasha, M. R., Koide, M., Tsuchiya, M., Suzuki, N., et al. (2019) In vitro exercise model using contractile human and mouse hybrid myotubes, Sci. Rep., 9, 11914.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Son, Y. H., Lee, S. M., Lee, S. H., Yoon, J. H., Kang, J. S., et al. (2019) Comparative molecular analysis of endurance exercise in vivo with electrically stimulated in vitro myotube contraction, J. Appl. Physiol., 127, 1742-1753.

    Article  CAS  PubMed  Google Scholar 

  60. Hartwig, S., Raschke, S., Knebel, B., Scheler, M., Irmler, M., et al. (2014) Secretome profiling of primary human skeletal muscle cells, Biochim. Biophys. Acta, 1844, 1011-1017.

    Article  CAS  PubMed  Google Scholar 

  61. Raschke, S., Eckardt, K., Bjorklund, H. K., Jensen, J., and Eckel, J. (2013) Identification and validation of novel contraction-regulated myokines released from primary human skeletal muscle cells, PLoS One, 8, e62008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Feng, H., Kang, C., Dickman, J. R., Koenig, R., Awoyinka, I., et al. (2013) Training-induced mitochondrial adaptation: role of peroxisome proliferator-activated receptor gamma coactivator-1alpha, nuclear factor-kappaB and beta-blockade, Exp. Physiol., 98, 784-795.

    Article  CAS  PubMed  Google Scholar 

  63. Burch, N., Arnold, A. S., Item, F., Summermatter, S., Brochmann Santana, S. G., et al. (2010) Electric pulse stimulation of cultured murine muscle cells reproduces gene expression changes of trained mouse muscle, PLoS One, 5, e10970.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Silveira, L. R., Pilegaard, H., Kusuhara, K., Curi, R., and Hellsten, Y. (2006) The contraction induced increase in gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator 1alpha (PGC-1alpha), mitochondrial uncoupling protein 3 (UCP3) and hexokinase II (HKII) in primary rat skeletal muscle cells is dependent on reactive oxygen species, Biochim. Biophys. Acta, 1763, 969-976.

    Article  CAS  PubMed  Google Scholar 

  65. Beiter, T., Hudemann, J., Burgstahler, C., Niess, A. M., and Munz, B. (2018) Effects of extracellular orotic acid on acute contraction-induced adaptation patterns in C2C12 cells, Mol. Cell Biochem., 448, 251-263.

    Article  CAS  PubMed  Google Scholar 

  66. Abdelmoez, A. M., Sardon, P. L., Smith, J. A. B., Gabriel, B. M., Savikj, M., et al. (2020) Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism, Am. J. Physiol. Cell Physiol., 318, C615-C626.

    Article  PubMed  Google Scholar 

  67. Feng, Y. Z., Nikolic, N., Bakke, S. S., Kase, E. T., Guderud, K., et al. (2015) Myotubes from lean and severely obese subjects with and without type 2 diabetes respond differently to an in vitro model of exercise, Am. J. Physiol. Cell Physiol., 308, C548-C556.

    Article  CAS  PubMed  Google Scholar 

  68. Park, S., Turner, K. D., Zheng, D., Brault, J. J., Zou, K., et al. (2019) Electrical pulse stimulation induces differential responses in insulin action in myotubes from severely obese individuals, J. Physiol., 597, 449-466.

    Article  CAS  PubMed  Google Scholar 

  69. Lund, J., Rustan, A. C., Lovsletten, N. G., Mudry, J. M., Langleite, T. M., et al. (2017) Exercise in vivo marks human myotubes in vitro: training-induced increase in lipid metabolism, PLoS One, 12, e0175441.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Gaster, M. (2019) The diabetic phenotype is preserved in myotubes established from type 2 diabetic subjects: a critical appraisal, APMIS, 127, 3-26.

    Article  CAS  PubMed  Google Scholar 

  71. Nilsson, E., and Ling, C. (2017) DNA methylation links genetics, fetal environment, and an unhealthy lifestyle to the development of type 2 diabetes, Clin. Epigenetics, 9, 105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Varemo, L., Henriksen, T. I., Scheele, C., Broholm, C., Pedersen, M., et al. (2017) Type 2 diabetes and obesity induce similar transcriptional reprogramming in human myocytes, Genome Med., 9, 47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Turner, D. C., Gorski, P. P., Maasar, M. F., Seaborne, R. A., Baumert, P., et al. (2020) DNA methylation across the genome in aged human skeletal muscle tissue and muscle-derived cells: the role of HOX genes and physical activity, Sci. Rep., 10, 15360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hawley, J. A., Hargreaves, M., Joyner, M. J., and Zierath, J. R. (2014) Integrative biology of exercise, Cell, 159, 738-749.

    Article  CAS  PubMed  Google Scholar 

  75. Tothova, J., Blaauw, B., Pallafacchina, G., Rudolf, R., Argentini, C., et al. (2006) NFATc1 nucleocytoplasmic shuttling is controlled by nerve activity in skeletal muscle, J. Cell Sci., 119, 1604-1611.

    Article  CAS  PubMed  Google Scholar 

  76. Ehlers, M. L., Celona, B., and Black, B. L. (2014) NFATc1 controls skeletal muscle fiber type and is a negative regulator of MyoD activity, Cell Rep., 8, 1639-1648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wojtaszewski, J. F., Mourtzakis, M., Hillig, T., Saltin, B., and Pilegaard, H. (2002) Dissociation of AMPK activity and ACCbeta phosphorylation in human muscle during prolonged exercise, Biochem. Biophys. Res. Commun., 298, 309-316.

    Article  CAS  PubMed  Google Scholar 

  78. Popov, D. V. (2018) Adaptation of skeletal muscles to contractile activity of varying duration and intensity: the role of PGC1a, Biochemistry (Moscow), 83, 613-628.

    Article  CAS  Google Scholar 

  79. Popov, D. V., Makhnovskii, P. A., Kurochkina, N. S., Lysenko, E. A., Vepkhvadze, T. F., and Vinogradova, O. L. (2018) Intensity-dependent gene expression after aerobic exercise in endurance-trained skeletal muscle, Biol. Sport, 35, 277-289.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tarum, J., Folkesson, M., Atherton, P. J., and Kadi, F. (2017) Electrical pulse stimulation: an in vitro exercise model for the induction of human skeletal muscle cell hypertrophy. A proof-of-concept study, Exp. Physiol., 102, 1405-1413.

    Article  CAS  PubMed  Google Scholar 

  81. Valero-Breton, M., Warnier, G., Castro-Sepulveda, M., Deldicque, L., and Zbinden-Foncea, H. (2020) Acute and chronic effects of high frequency electric pulse stimulation on the Akt/mTOR pathway in human primary myotubes, Front. Bioeng. Biotechnol., 8, 565679.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Humphrey, S. J., Yang, G., Yang, P., Fazakerley, D. J., Stockli, J., et al. (2013) Dynamic adipocyte phosphoproteome reveals that Akt directly regulates mTORC2, Cell Metab., 17, 1009-1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Humphrey, S. J., Azimifar, S. B., and Mann, M. (2015) High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics, Nat. Biotechnol., 33, 990-995.

    Article  CAS  PubMed  Google Scholar 

  84. Sacco, F., Humphrey, S. J., Cox, J., Mischnik, M., Schulte, A., et al. (2016) Glucose-regulated and drug-perturbed phosphoproteome reveals molecular mechanisms controlling insulin secretion, Nat. Commun., 7, 13250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, J., Li, Q., Tang, J., Xia, F., Wu, J., and Zeng, R. (2015) Quantitative Phosphoproteomics revealed glucose-stimulated responses of islet associated with insulin secretion, J. Proteome Res., 14, 4635-4646.

    Article  CAS  PubMed  Google Scholar 

  86. Tang, J. S., Li, Q. R., Li, J. M., Wu, J. R., and Zeng, R. (2017) Systematic synergy of glucose and GLP-1 to stimulate insulin secretion revealed by quantitative phosphoproteomics, Sci. Rep., 7, 1018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Hoffman, N. J., Parker, B. L., Chaudhuri, R., Fisher-Wellman, K. H., Kleinert, M., et al. (2015) Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates, Cell Metab., 22, 922-935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Needham, E. J., Humphrey, S. J., Cooke, K. C., Fazakerley, D. J., Duan, X., et al. (2019) Phosphoproteomics of acute cell stressors targeting exercise signaling networks reveal drug interactions regulating protein secretion, Cell Rep., 29, 1524-1538.

    Article  CAS  PubMed  Google Scholar 

  89. Denes, L. T., Riley, L. A., Mijares, J. R., Arboleda, J. D., McKee, K., et al. (2019) Culturing C2C12 myotubes on micromolded gelatin hydrogels accelerates myotube maturation, Skelet. Muscle, 9, 17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Hoshino, D., Kawata, K., Kunida, K., Hatano, A., Yugi, K., et al. (2020) Trans-omic analysis reveals ROS-dependent pentose phosphate pathway activation after high-frequency electrical stimulation in C2C12 myotubes, iScience, 23, 101558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Stefanetti, R. J., Lamon, S., Wallace, M., Vendelbo, M. H., Russell, A. P., and Vissing, K. (2015) Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training, Pflugers Arch., 467, 1523-1537.

    Article  CAS  PubMed  Google Scholar 

  92. Pagano, A. F., Py, G., Bernardi, H., Candau, R. B., and Sanchez, A. M. (2014) Autophagy and protein turnover signaling in slow-twitch muscle during exercise, Med. Sci. Sports Exerc., 46, 1314-1325.

    Article  CAS  PubMed  Google Scholar 

  93. Wilkinson, S. B., Phillips, S. M., Atherton, P. J., Patel, R., Yarasheski, K. E., et al. (2008) Differential effects of resistance and endurance exercise in the fed state on signalling molecule phosphorylation and protein synthesis in human muscle, J. Physiol., 586, 3701-3717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Donges, C. E., Burd, N. A., Duffield, R., Smith, G. C., West, D. W., et al. (2012) Concurrent resistance and aerobic exercise stimulates both myofibrillar and mitochondrial protein synthesis in sedentary middle-aged men, J. Appl. Physiol. (1985), 112, 1992-2001.

    Article  CAS  Google Scholar 

  95. Di Donato, D. M., West, D. W., Churchward-Venne, T. A., Breen, L., et al. (2014) Influence of aerobic exercise intensity on myofibrillar and mitochondrial protein synthesis in young men during early and late postexercise recovery, Am. J. Physiol Endocrinol. Metab., 306, E1025-E1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Midrio, M. (2006) The denervated muscle: facts and hypotheses. A historical review, Eur. J. Appl. Physiol., 98, 1-21.

    Article  PubMed  Google Scholar 

  97. Salmons, S., and Sreter, F. A. (1976) Significance of impulse activity in the transformation of skeletal muscle type, Nature, 263, 30-34.

    Article  CAS  PubMed  Google Scholar 

  98. Ferrari, M. B., Podugu, S., and Eskew, J. D. (2006) Assembling the myofibril: coordinating contractile cable construction with calcium, Cell Biochem. Biophys., 45, 317-337.

    Article  CAS  PubMed  Google Scholar 

  99. Nedachi, T., Fujita, H., and Kanzaki, M. (2008) Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle, Am. J. Physiol. Endocrinol. Metab., 295, E1191-E1204.

    Article  CAS  PubMed  Google Scholar 

  100. Khodabukus, A., Madden, L., Prabhu, N. K., Koves, T. R., Jackman, C. P., et al. (2019) Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle, Biomaterials, 198, 259-269.

    Article  CAS  PubMed  Google Scholar 

  101. Park, H., Bhalla, R., Saigal, R., Radisic, M., Watson, N., et al. (2008) Effects of electrical stimulation in C2C12 muscle constructs, J. Tissue Eng. Regen. Med., 2, 279-287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shimizu, K., Fujita, H., and Nagamori, E. (2009) Alignment of skeletal muscle myoblasts and myotubes using linear micropatterned surfaces ground with abrasives, Biotechnol. Bioeng., 103, 631-638.

    Article  CAS  PubMed  Google Scholar 

  103. Huang, N. F., Lee, R. J., and Li, S. (2010) Engineering of aligned skeletal muscle by micropatterning, Am. J. Transl. Res., 2, 43-55.

    PubMed  PubMed Central  Google Scholar 

  104. Huang, N. F., Thakar, R. G., Wong, M., Kim, D., Lee, R. J., and Li, S. (2004) Tissue engineering of muscle on micropatterned polymer films, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2004, 4966-4969.

    PubMed  Google Scholar 

  105. Huang, N. F., Patel, S., Thakar, R. G., Wu, J., Hsiao, B. S., et al. (2006) Myotube assembly on nanofibrous and micropatterned polymers, Nano Lett., 6, 537-542.

    Article  CAS  PubMed  Google Scholar 

  106. Bukatin, A. S., Mukhin, I. S., Malyshev, E. I., Kukhtevich, I. V., Evstrapov, A. A., and Dubina, M. V. (2016) Fabrication of high-aspect-ratio microstructures in polymer microfluid chips for in vitro single cell analysis, Tech. Phys., 61, 1566-1571.

    Article  CAS  Google Scholar 

  107. Suh, G. C., Bettadapur, A., Santoso, J. W., and McCain, M. L. (2017) Fabrication of micromolded gelatin hydrogels for long-term culture of aligned skeletal myotubes, Methods Mol. Biol., 1668, 147-163.

    Article  CAS  PubMed  Google Scholar 

  108. Bettadapur, A., Suh, G. C., Geisse, N. A., Wang, E. R., Hua, C., et al. (2016) Prolonged culture of aligned skeletal myotubes on micromolded gelatin hydrogels, Sci. Rep., 6, 28855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cooper, S. T., Maxwell, A. L., Kizana, E., Ghoddusi, M., Hardeman, E. C., et al. (2004) C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with peripheral nuclei and adult fast myosin expression, Cell Motil. Cytoskelet., 58, 200-211.

    Article  CAS  Google Scholar 

  110. Lautaoja, J. H., Pekkala, S., Pasternack, A., Laitinen, M., Ritvos, O., and Hulmi, J. J. (2020) Differentiation of murine C2C12 myoblasts strongly reduces the effects of myostatin on intracellular signaling, Biomolecules, 10, 695, https://doi.org/10.3390/biom10050695.

    Article  CAS  PubMed Central  Google Scholar 

  111. Pekkala, S., Keskitalo, A., Kettunen, E., Lensu, S., Nykanen, N., et al. (2019) Blocking activin receptor ligands is not sufficient to rescue cancer-associated gut microbiota-a role for gut microbial flagellin in colorectal cancer and cachexia? Cancers. (Basel), 11, 1799, https://doi.org/10.3390/cancers11111799.

    Article  CAS  PubMed Central  Google Scholar 

  112. Pandurangan, M., Jeong, D., Amna, T., Van, B. H., and Hwang, I. (2012) Co-culture of C2C12 and 3T3-L1 preadipocyte cells alters the gene expression of calpains, caspases and heat shock proteins, In vitro Cell Dev. Biol. Anim., 48, 577-582.

    Article  CAS  PubMed  Google Scholar 

  113. Pandurangan, M., and Hwang, I. (2014) Application of cell co-culture system to study fat and muscle cells, Appl. Microbiol. Biotechnol., 98, 7359-7364.

    Article  CAS  PubMed  Google Scholar 

  114. Takegahara, Y., Yamanouchi, K., Nakamura, K., Nakano, S., and Nishihara, M. (2014) Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner, Exp. Cell Res., 324, 105-114.

    Article  CAS  PubMed  Google Scholar 

  115. Collins, K. H., Herzog, W., MacDonald, G. Z., Reimer, R. A., Rios, J. L., et al. (2018) Obesity, metabolic syndrome, and musculoskeletal disease: common inflammatory pathways suggest a central role for loss of muscle integrity, Front. Physiol., 9, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Stafeev, I., Podkuychenko, N., Michurina, S., Sklyanik, I., Panevina, A., et al. (2019) Low proliferative potential of adipose-derived stromal cells associates with hypertrophy and inflammation in subcutaneous and omental adipose tissue of patients with type 2 diabetes mellitus, J. Diabetes Complicat., 33, 148-159.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-015-00415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniil V. Popov.

Ethics declarations

The authors declare no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vepkhvadze, T.F., Vorotnikov, A.V. & Popov, D.V. Electrical Stimulation of Cultured Myotubes in vitro as a Model of Skeletal Muscle Activity: Current State and Future Prospects. Biochemistry Moscow 86, 597–610 (2021). https://doi.org/10.1134/S0006297921050084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921050084

Keywords

Navigation