Skip to main content
Log in

Activity of Chemically Synthesized Peptide Encoded by the miR156A Precursor and Conserved in the Brassicaceae Family Plants

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

It was recently found that the primary transcripts of some microRNA genes (pri-miRNAs) are able to express peptides with 12 to 40 residues in length. These peptides, called miPEPs, participate in the transcriptional regulation of their own pri-miRNAs. In our previous studies, we used bioinformatic approach for comparative analysis of pri-miRNA sequences in plant genomes to identify a new group of miPEPs (miPEP-156a peptides) encoded by pri-miR156a in several dozen species of the Brassicaceae family. Exogenous miPEP-156a peptides could efficiently penetrate into the plant seedlings through the root system and spread systemically to the leaves. The peptides produced moderate morphological effect accelerating primary root growth. In parallel, the miPEP-156a peptides upregulated expression of their own pri-miR156a. Importantly, the observed effects at both morphological and molecular levels correlated with the peptide ability to quickly translocate into the cell nucleus and to bind chromatin. In this work, we established secondary structure of the miPEP-156a and demonstrated its changes induced by formation of the peptide complex with DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Table 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

Notes

  1. * FAM fluorescence detection.

Abbreviations

CD:

circular dichroism

miRNA:

microRNA

miPEP:

peptide encoded by pri-miRNA

ORF:

open reading frame

pre-miRNA:

miRNA precursor

pri-miRNA:

miRNA gene primary transcript

qPCR:

quantitative polymerase chain reaction

TRAP:

translating ribosome affinity immunopurification

References

  1. Wang, J., Mei, J., and Ren, G. (2019) Plant microRNAs: biogenesis, homeostasis, and degradation, Front. Plant Sci., 10, 1-12, https://doi.org/10.3389/fpls.2019.00360.

    Article  Google Scholar 

  2. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function, Cell, 116, 281-297, https://doi.org/10.1016/s0092-8674(04)00045-5.

    Article  CAS  PubMed  Google Scholar 

  3. Rogers, K., and Chen, X. (2013) Biogenesis, turnover, and mode of action of plant microRNAs, Plant Cell, 25, 2383-2399, https://doi.org/10.1105/tpc.113.113159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yu, Y., Jia, T., and Chen, X. (2017) The ‘how’ and ‘where’ of plant microRNAs, New Phytol., 216, 1002-1017, https://doi.org/10.1111/nph.14834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song, X., Li, Y., Cao, X., and Qi, Y. (2019) MicroRNAs and their regulatory roles in plant–environment interactions, Annu. Rev. Plant Biol., 70, 489-525, https://doi.org/10.1146/annurev-arplant-050718-100334.

    Article  CAS  PubMed  Google Scholar 

  6. Liu, H., Yu, H., Tang, G., and Huang, T. (2018) Small but powerful: function of microRNAs in plant development, Plant Cell Rep., 37, 515-528, https://doi.org/10.1007/s00299-017-2246-5.

    Article  CAS  PubMed  Google Scholar 

  7. Budak, H., and Akpinar, B. A. (2015) Plant miRNAs: biogenesis, organization and origins, Funct. Integr. Genomics, 15, 523-531, https://doi.org/10.1007/s10142-015-0451-2.

    Article  CAS  PubMed  Google Scholar 

  8. Fukudome, A., and Fukuhara, T. (2017) Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis, J. Plant Res., 130, 33-44, https://doi.org/10.1007/s10265-016-0877-1.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, H., Xia, R., Meyers, B. C., and Walbot, V. (2015) Evolution, functions, and mysteries of plant ARGONAUTE proteins, Curr. Opin. Plant Biol., 27, 84-90, https://doi.org/10.1016/j.pbi.2015.06.011.

    Article  CAS  PubMed  Google Scholar 

  10. Tavormina, P., De Coninck, B., Nikonorova, N., De Smet, I., and Cammue, B. P. (2015) The plant peptidome: an expanding repertoire of structural features and biological functions, Plant Cell, 27, 2095-2118, https://doi.org/10.1105/tpc.15.00440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zanetti, M. E., Chang, I. F., Gong, F., Galbraith, D. W., and Bailey-Serres, J. (2005) Immunopurification of polyribosomal complexes of Arabidopsis for global analysis of gene expression, Plant Physiol., 138, 624-635, https://doi.org/10.1104/pp.105.059477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Juntawong, P., Girke, T., Bazin, J., and Bailey-Serres, J. (2014) Translational dynamics revealed by genome-wide profiling of ribosome footprints in Arabidopsis, Proc. Natl. Acad. Sci. USA, 111, E203-212, https://doi.org/10.1073/pnas.1317811111.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu, S., Wang, J., He, Y., Meng, N., and Yan, G.-R. (2018) Peptides/proteins encoded by non-coding RNA: a novel resource bank for drug targets and biomarkers, Front. Pharmacol., 9, 1295, https://doi.org/10.3389/fphar.2018.01295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hellens, R. P., Brown, C. M., Chisnall, M. A. W., Waterhouse, P. M., and Macknight, R. C. (2016) The emerging world of small ORFs, Trends Plant Sci., 21, 317-328, https://doi.org/10.1016/j.tplants.2015.11.005.

    Article  CAS  PubMed  Google Scholar 

  15. Li, L. J., Leng, R. X., Fan, Y. G., Pan, H. F., and Ye, D. Q. (2017) Translation of noncoding RNAs: focus on lncRNAs, pri-miRNAs, and circRNAs, Exp. Cell Res., 361, 1-8, https://doi.org/10.1016/j.yexcr.2017.10.010.

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Q. J., Deng, B. H., Gao, J., Zhao, Z. Y., Chen, Z. L., et al. (2020) A miRNA-encoded small peptide, vvi-miPEP171d1, regulates adventitious root formation, Plant Physiol., 183, 656-670, https://doi.org/10.1104/pp.20.00197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yeasmin, F., Yada, T., and Akimitsu, N. (2018) Micropeptides encoded in transcripts previously identified as long noncoding RNAs: a new chapter in transcriptomics and proteomics, Front. Genet., 9, 144, https://doi.org/10.3389/fgene.2018.00144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lauressergues, D., Couzigou, J. M., Clemente, H. S., Martinez, Y., Dunand, C., et al. (2015) Primary transcripts of microRNAs encode regulatory peptides, Nature, 520, 90-93, https://doi.org/10.1038/nature14346.

    Article  CAS  PubMed  Google Scholar 

  19. Couzigou, J. M., André, O., Guillotin, B., Alexandre, M., Combier, J. P. (2016) Use of microRNA-encoded peptide miPEP172c to stimulate nodulation in soybean, New Phytol., 211, 379-381, https://doi.org/10.1111/nph.13991.

    Article  CAS  PubMed  Google Scholar 

  20. Ram, M. K., Mukherjee, K., and Pandey, D. M. (2019) Identification of miRNA, their targets and miPEPs in peanut (Arachishypogaea L.), Comput. Biol. Chem., 83, 107100, https://doi.org/10.1016/j.compbiolchem.2019.107100.

    Article  CAS  PubMed  Google Scholar 

  21. Couzigou, J. M., Lauressergues, D., Bécard, G., and Combier, J. P. (2015) miRNA-encoded peptides (miPEPs): a new tool to analyze the roles of miRNAs in plant biology, RNA Biol., 12, 1178-1180, https://doi.org/10.1080/15476286.2015.1094601.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morozov, S. Y., Ryazantsev, D. Y., and Erokhina, T. N. (2019) Bioinformatics analysis of the novel conserved micropeptides encoded by the plants of family Brassicaceae, J. Bioinform. Syst. Biol., 2, 066-077, https://doi.org/10.26502/jbsb.5107009.

    Article  Google Scholar 

  23. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., and Scheible, W. R. (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis, Plant Physiol., 139, 5-17, https://doi.org/10.1104/pp.105.063743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Simon, P. (2003) Q-Gene: processing quantitative real-time RT-PCR data, Bioinformatics, 19, 1439-1440, https://doi.org/10.1093/bioinformatics/btg157.

    Article  CAS  PubMed  Google Scholar 

  25. Witus, L. S., and Francis, M. (2010) Site-specific protein bioconjugation via a pyridoxal 5′-phosphate-mediated N-terminal transamination reaction, Curr. Protoc. Chem. Biol., 2, 125-134, https://doi.org/10.1002/9780470559277.ch100018.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu, R., and Hu, J. (2013) DNABind: a hybrid algorithm for DNA-binding residue prediction by combining machine learning and template-based approaches, Proteins Struct. Funct. Bioinform., 81, 1888-1899, https://doi.org/10.1002/prot.24330.

    Article  CAS  Google Scholar 

  27. Rakitina, D. V., Taliansky, M., Brown, J. W. S., and Kalinina, N. O. (2011) Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates, Nucleic Acids Res., 39, 8869-8880, https://doi.org/10.1093/nar/gkr594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, W., Kim, H. E., Jun, A. R., Jung, M. G., Jin, S., et al. (2016) Structural determinants of miR156a precursor processing in temperature-responsive flowering in Arabidopsis, J. Exp Bot., 67, 4659-4670, https://doi.org/10.1093/jxb/erw248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu, N., Niu, Q. W., Ng, K. H., and Chua, N. H. (2015) The role of miR156/SPLs modules in Arabidopsis lateral root development, Plant J., 83, 673-685, https://doi.org/10.1111/tpj.12919.

    Article  CAS  PubMed  Google Scholar 

  30. Lv, S., Pan, L., and Wang, G. (2016) Commentary: primary transcripts of microRNAs encode regulatory peptides, Front Plant Sci., 22, 1436, https://doi.org/10.3389/fpls.2016.01436.

    Article  Google Scholar 

  31. Shahin-Kaleybar, B., Niazi, A., Afsharifar, A., Nematzadeh, G., Yousefi, R., et al. (2020) Isolation of cysteine-rich peptides from Citrullus colocynthis, Biomolecules, 10, E1326, https://doi.org/10.3390/biom10091326.

    Article  CAS  PubMed  Google Scholar 

  32. Brosnan, C. A., Sarazin, A., Lim, P., Bologna, N. G., Hirsch-Hoffmann, M., and Voinnet, O. (2019) Genome-scale, single-cell-type resolution of microRNA activities within a whole plant organ, EMBO J., 38, e100754, https://doi.org/10.15252/embj.2018100754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ormancey, M., Le Ru, A., Duboé, C., Jin, H., Thuleau, P., et al. (2020) Internalization of miPEP165a into Arabidopsis roots depends on both passive diffusion and endocytosis-associated processes, Int. J. Mol. Sci., 21, 2266, https://doi.org/10.3390/ijms21072266.

    Article  CAS  PubMed Central  Google Scholar 

  34. Sorokin, A. V., Kim, E. R., Ovchinnikov, L. P. (2007) Nucleocytoplasmic transport of proteins, Biochemistry (Moscow), 72, 1439-1457, https://doi.org/10.1134/s0006297907130032.

    Article  CAS  Google Scholar 

  35. Merkle, T. (2011) Nucleo-cytoplasmic transport of proteins and RNA in plants, Plant Cell Rep., 30, 153-176, https://doi.org/10.1007/s00299-010-0928-3.

    Article  CAS  PubMed  Google Scholar 

  36. Gizak, A., Maciaszczyk-Dziubinska, E., Jurowicz, M., and Rakus, D. (2009) Muscle FBPase is targeted to nucleus by its 203-KKKGK-207 sequence, Proteins, 77, 262-267, https://doi.org/10.1002/prot.22506.

    Article  CAS  PubMed  Google Scholar 

  37. Lanctot, C., Cheutin, T., Cremer, M., Cavalli, G., and Cremer, T. (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions, Nat. Rev. Genet., 8, 104-115, https://doi.org/10.1038/nrg2041.

    Article  CAS  PubMed  Google Scholar 

  38. Bennetzen, M. V., Larsen, D. H., Bunkenborg, J., Bartek, J., Lukas, J., and Andersen, J. S. (2010) Site-specific phosphorylation dynamics of the nuclear proteome during the DNA damage response, Mol. Cell. Proteomics, 9, 1314-1323, https://doi.org/10.1074/mcp.M900616-MCP200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lai, X., Verhage, L., Hugouvieux, V., and Zubieta, C. (2018) Pioneer factors in animals and plants-colonizing chromatin for gene regulation, Molecules, 23, 1914-1936, https://doi.org/10.3390/molecules23081914.

    Article  CAS  PubMed Central  Google Scholar 

  40. Lone, I. N., Shukla, M. S., Charles Richard, J. L., Peshev, Z. Y., Dimitrov, S., et al. (2013) Binding of NF-kB to nucleosomes: effect of translational positioning, nucleosome remodeling and linker histone H1, PLoS Genet., 9, e1003830, https://doi.org/10.1371/journal.pgen.1003830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Horikoshi, N., Kujirai, T., Sato, K., Kimura, H., and Kurumizaka, H. (2019) Structure-based design of an H2A.Z.1 mutant stabilizing a nucleosome in vitro and in vivo, Biochem. Biophys. Res. Commun., 515, 719-724, https://doi.org/10.1016/j.bbrc.2019.06.012.

    Article  CAS  PubMed  Google Scholar 

  42. Van der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., et al. (2014) Classification of intrinsically disordered regions and proteins, Chem. Rev., 114, 6589-6631, https://doi.org/10.1021/cr400525m.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Peng, Z., and Kurgan, L. (2015) High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder, Nucleic Acids Res., 43, e121, https://doi.org/10.1093/nar/gkv585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, C., Uversky, V. N., and Kurgan, L. (2016) Disordered nucleiome: Abundance of intrinsic disorder in the DNA- and RNA-binding proteins in 1121 species from Eukaryota, Bacteria and Archaea, Proteomics, 16, 1486-1498, https://doi.org/10.1002/pmic.201500177.

    Article  CAS  PubMed  Google Scholar 

  45. Sabari, B. R., Dall’Agnese, A., Boija, A., Klein, I. A., Coffey, E. L., et al. (2018) Coactivator condensation at super-enhancers links phase separation and gene control, Science, 361, earr3958, https://doi.org/10.1126/science.aar3958.

    Article  CAS  Google Scholar 

  46. Quirolo, Z. B., Sequeira, M. A., Martins, J. C., and Dodero, V. I. (2019) Sequence-specific DNA binding by noncovalent peptide – azocyclodextrin dimer complex as a suitable model for conformational fuzziness, Molecules, 24, 2508-2528, https://doi.org/10.3390/molecules24132508.

    Article  CAS  PubMed Central  Google Scholar 

  47. Miskei, M., Gregus, A., Sharma, R., Duro, N., Zsolyomi, F., and Fuxreiter, M. (2017) Fuzziness enables context dependence protein interactions, FEBS Lett., 591, 2682-2695, https://doi.org/10.1002/1873-3468.12762.

    Article  CAS  PubMed  Google Scholar 

  48. Wright, P. E., and Dyson, H. J. (2009) Linking folding and binding, Curr. Opin. Struct. Biol., 19, 31-38, https://doi.org/10.1016/j.sbi.2008.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sharma, A., Badola, P. K., Bhatia, C., Sharma, D., and Trivedi, P. K. (2020) Primary transcript of miR858 encodes regulatory peptide and controls flavonoid biosynthesis and development in Arabidopsis, Nat. Plants, 6, 1262-1274, https://doi.org/10.1038/s41477-020-00769-x.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to A. A. Ignatova (Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry) for help with the CD experiments.

Funding

This work was financially supported by the Russian Foundation for Basic Research (project no. 19-04-00174-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Yu. Morozov.

Ethics declarations

The authors declare no conflict of interest in financial or any other sphere. The article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erokhina, T.N., Ryazantsev, D.Y., Samokhvalova, L.V. et al. Activity of Chemically Synthesized Peptide Encoded by the miR156A Precursor and Conserved in the Brassicaceae Family Plants. Biochemistry Moscow 86, 551–562 (2021). https://doi.org/10.1134/S0006297921050047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297921050047

Keywords

Navigation