Skip to main content
Log in

Features of Supercritical Heat Transfer at Short Times and Small Sizes

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this article, we present new data on the non-stationary heat transfer in supercritical water at different heating regimes with characteristic times from 5 ms to 15 ms. The pressure, being the parameter of the experiment, was varied from the critical pressure pc up to 4.5 p/pc (namely, up to 1 kbar). These data serve as a significant addition to the well-known picture of supercritical heat transfer by phenomena inherent in the non-stationary case. The impetus for the study came from the discovery of an unexpected result observed in conductive heat transfer experiments under a powerful heat release—namely, the effect of a decrease in the intensity of heat transfer in the course of a rapid transition of the compressed fluid to the supercritical region of temperatures along the supercritical isobar. The observed effect, which exhibits a threshold character in the vicinity of the critical temperature, occurs up to pressures of 3–4 p/pc. The discussion is based on the hypothesis of a suppression of fluctuations by various external factors. It is assumed that under conditions of a short-term experiment, the complete thermodynamic equilibrium cannot be reached. This factor, along with the large temperature gradient and the presence of a heating surface, “cuts off” large-scale fluctuations responsible for the anomalous behaviour of thermophysical properties in the stationary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets of the primary experimental data are available at https://yadi.sk/d/p8TJKcl6rBsEQg.

References

  1. J.M.H. Levelt Sengers, Critical exponents at the turn of the century. Physica A 82, 319 (1976). https://doi.org/10.1016/0378-4371(76)90012-1

    Article  ADS  Google Scholar 

  2. V.P. Skripov, M.Z. Faizullin, Crystal–Liquid–Gas Phase Transition and Thermodynamic Similarity (Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim, 2006), pp. 11–19

    Book  Google Scholar 

  3. M.A. Anisimov, Letter to the editor: fifty years of breakthrough discoveries in fluid criticality. Int. J. Thermophys. 32, 2001 (2011). https://doi.org/10.1007/s10765-011-1073-0

    Article  ADS  Google Scholar 

  4. J.V. Sengers, Encountering surprises in thermophysics. Int. J. Thermophys. 41, 117 (2020). https://doi.org/10.1007/s10765-020-02696-7

    Article  ADS  Google Scholar 

  5. P.V. Skripov, S.B. Rutin, Heat transfer in supercritical fluids: the case of high-power heat release. Interfacial Phenom. Heat Transf. 5, 187 (2017). https://doi.org/10.1615/InterfacPhenomHeatTransfer.2018025453

    Article  Google Scholar 

  6. A. Michels, J.V. Sengers, The thermal conductivity of carbon dioxide in the critical region: III. Verification of the absence of convection. Physica 28, 1238 (1962). https://doi.org/10.1016/0031-8914(62)90136-2

    Article  ADS  Google Scholar 

  7. V.K. Semenchenko, Second-order phase transitions and critical phenomena. Zh. Fiz. Khim. 21, 1461 (1947). (in Russian)

    Google Scholar 

  8. J.V. Sengers, Behavior of viscosity and thermal conductivity of fluids near the critical point, in Phenomena in the Neighborhood of Critical Points. ed. by M.S. Green, J.V. Sengers (NBS Misc. Publ. 273, Washington, 1966), p. 165

    Google Scholar 

  9. R. Tufeu, D.Y. Ivanov, Y. Garrabos, B. Le Neindre, Thermal conductivity of ammonia in a large temperature and pressure range including the critical region. Ber. Bunsenges. Phys. Chem. 88, 422 (1984). https://doi.org/10.1002/bbpc.19840880421

    Article  Google Scholar 

  10. W. Wagner, A. Pruβb, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387 (2002). https://doi.org/10.1063/1.1461829

    Article  ADS  Google Scholar 

  11. V. Vesovic, W.A. Wakeham, G.A. Olchowy, J.V. Sengers, J.T.R. Watson, J. Millat, J. Phys. Chem. Ref. Data 19, 763 (1990). https://doi.org/10.1063/1.555875

    Article  ADS  Google Scholar 

  12. B.W. Tiesinga, E.P. Sakonidou, H.R. van den Berg, J. Luettmer-Strathmann, J.V. Sengers, J. Chem. Phys. 101, 6944 (1994). https://doi.org/10.1063/1.468322

    Article  ADS  Google Scholar 

  13. I.M. Abdulagatov, P.V. Skripov, Thermodynamic and transport properties of supercritical fluids: review of thermodynamic properties (part 1). Russ. J. Phys. Chem. B 14, 1178 (2020). https://doi.org/10.1134/S1990793120070192

    Article  Google Scholar 

  14. D.G. Friend, H.M. Roder, The thermal conductivity surface for mixtures of methane and ethane. Int. J. Thermophys. 8, 13 (1987). https://doi.org/10.1007/BF00503221

    Article  ADS  Google Scholar 

  15. E.P. Sakonidou, H.R. van den Berg, C.A. ten Seldam, J.V. Sengers, Finite thermal conductivity at the vapor-liquid critical line of a binary fluid mixture. Phys. Rev. E 56, 4943 (1997). https://doi.org/10.1103/PhysRevE.56.R4943

    Article  ADS  Google Scholar 

  16. J. Straub, A. Haupt, L. Eicher, Measurements of the isochoric heat cv at the critical point of SF6 under microgravity: results of the German Spacelab Mission D2. Int. J. Thermophys. 16, 1033 (1995). https://doi.org/10.1007/BF02081273

    Article  ADS  Google Scholar 

  17. D.Y. Ivanov, Critical Behavior of Nonideal Systems (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008).

    Book  Google Scholar 

  18. S.B. Rutin, P.V. Skripov, Investigation of not fully stable fluids by the method of controlled pulse heating. 1. Experimental approach. Thermochim. Acta 562, 70 (2013). https://doi.org/10.1016/j.tca.2013.03.030

    Article  Google Scholar 

  19. S.B. Rutin, A.A. Smotritskiy, A.A. Starostin, Y.S. Okulovsky, P.V. Skripov, Heat transfer under high-power heating of liquids. 1. Experiment and inverse algorithm. Int. J. Heat Mass Transf. 62, 135 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.060

    Article  Google Scholar 

  20. S.B. Rutin, P.V. Skripov, Comments on “the apparent thermal conductivity of liquids containing solid particles of nanometer dimensions: a critique” (Int. J. Thermophys. 36, 1367 (2015)). Int. J. Thermophys. 37, 102 (2016). https://doi.org/10.1007/s10765-016-2108-3

    Article  ADS  Google Scholar 

  21. H.M. Roder, J. Res. Natl. Bur. Stand. (U.S.) 86, 457 (1981)

    Article  Google Scholar 

  22. R.A. Perkins, H.M. Roder, C.A.N. de Castro, J. Res. Natl. Inst. Stand. Technol. 96, 247 (1991). https://doi.org/10.6028/jres.096.014

    Article  Google Scholar 

  23. S.B. Rutin, P.V. Skripov, Heat transfer in supercritical fluids under pulse heating regime. Int. J. Heat Mass Transf. 57, 126 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.027

    Article  Google Scholar 

  24. S.B. Rutin, A.A. Igolnikov, P.V. Skripov, High-power heat release in supercritical water: insight into the heat transfer deterioration problem. J. Eng. Thermophys. 29, 67 (2020). https://doi.org/10.1134/S1810232820010063

    Article  Google Scholar 

  25. Y.B. Zel’dovich, Recovery of the van der Waals critical point in fast processes. Sov. Phys. JETP 53, 1101 (1981)

    Google Scholar 

  26. S. Pittois, B. Van Roie, C. Glorieux, J. Thoen, Thermal conductivity, thermal effusivity, and specific heat capacity near the lower critical point of the binary liquid mixture n-butoxyethanol–water. J. Chem. Phys. 121, 1866 (2004). https://doi.org/10.1063/1.1765652

    Article  ADS  Google Scholar 

  27. J.M.H. Levelt Sengers, How Fluids Unmix (Royal Netherlands Academy of Arts and Sciences, Amsterdam, 2002).

    MATH  Google Scholar 

  28. A.A. Igolnikov, S.B. Rutin, P.V. Skripov, Short-term measurements in thermally-induced unstable states of mixtures with LCST. Thermochim. Acta 695, 178815 (2021). https://doi.org/10.1016/j.tca.2020.178815

    Article  Google Scholar 

Download references

Acknowledgements

This article is dedicated to the memory of Professor Dmitry Yu. Ivanov (17/10/1939–06/03/2021), see Refs. [9, 17].

Funding

This study was supported by the Russian Science Foundation (Project No. 19-19-00115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Skripov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skripov, P.V., Rutin, S.B. Features of Supercritical Heat Transfer at Short Times and Small Sizes. Int J Thermophys 42, 110 (2021). https://doi.org/10.1007/s10765-021-02869-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02869-y

Keywords

Navigation