Skip to main content
Log in

Inkjet−Printable Nanoporous Ag Disk Arrays Enabling Coffee−Ring Effect−Driven Analyte Enrichment Towards Practical SERS Applications

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

To make surface enhanced Raman scattering (SERS) sensors more practical, we propose nanoporous Ag disks as SERS-active plasmonic structures that can be readily inkjet-printed just before use to avoid degradation of SERS enhancement. Together with the aid of the enhanced plasmonic fields from the nanoporous Ag (confirmed by electromagnetic simulation), we utilize a coffee-ring effect to concentrate target analytes, which is demonstrated by confocal Raman measurements. By using the proposed SERS sensor, Raman signals of TiO2 nanoparticles with a concentration of ppm to sub-ppb have been successfully measured. TiO2 in commercial consumables has been also detected by distinguishing its crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nie, S., & Emory, S. R. (1997). Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275(5303), 1102–1106.

    Article  Google Scholar 

  2. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., et al. (1997). Single molecule detection using surface-enhanced Raman scattering (SERS). Physical Review Letters, 78(9), 1667–1670.

    Article  Google Scholar 

  3. Stiles, P. L., Dieringer, J. A., Shah, N. C., & Duyne, R. P. V. (2008). Surface-enhanced Raman spectroscopy. Annual Review of Analytical Chemistry, 1(1), 601–626.

    Article  Google Scholar 

  4. Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E., & Van Duyne, R. P. (2012). SERS: Materials, applications, and the future. Materials Today, 15(1), 16–25.

    Article  Google Scholar 

  5. Luo, S.-C., Sivashanmugan, K., Liao, J.-D., Yao, C.-K., & Peng, H.-C. (2014). Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosensors and Bioelectronics, 61, 232–240.

    Article  Google Scholar 

  6. Ding, S.-Y., Yi, J., Li, J.-F., Ren, B., Wu, D.-Y., Panneerselvam, R., et al. (2016). Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. [Review Article]. Nature Reviews Materials, 1, 16021.

    Article  Google Scholar 

  7. Jeon, T. Y., Kim, D. J., Park, S.-G., Kim, S.-H., & Kim, D.-H. (2016). Nanostructured plasmonic substrates for use as SERS sensors. Nano Convergence, 3(1), 18.

    Article  Google Scholar 

  8. Mayer, K. M., & Hafner, J. H. (2011). Localized surface plasmon resonance sensors. Chemical Reviews, 111(6), 3828–3857.

    Article  Google Scholar 

  9. Singh Sekhon, J., & Verma, S. (2011). Refractive index sensitivity analysis of Ag, Au, and Cu nanoparticles. Plasmonics, 6(2), 311–317.

    Article  Google Scholar 

  10. Le Ru, E. C., Meyer, M., & Etchegoin, P. G. (2006). Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. The Journal of Physical Chemistry B, 110(4), 1944–1948.

    Article  Google Scholar 

  11. Lim, D.-K., Jeon, K.-S., Kim, H. M., Nam, J.-M., & Suh, Y. D. (2009). Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nature Materials, 9, 60.

    Article  Google Scholar 

  12. Wi, J.-S., Barnard, E. S., Wilson, R. J., Zhang, M., Tang, M., Brongersma, M. L., et al. (2011). Sombrero-shaped plasmonic nanoparticles with molecular-level sensitivity and multifunctionality. ACS Nano, 5(8), 6449–6457.

    Article  Google Scholar 

  13. Mcmahon, M. D., Lopez, R., Meyer, H. M., Feldman, L. C., & Haglund, R. F. (2005). Rapid tarnishing of silver nanoparticles in ambient laboratory air. Applied Physics B, 80(7), 915–921.

    Article  Google Scholar 

  14. Erol, M., Han, Y., Stanley, S. K., Stafford, C. M., Du, H., & Sukhishvili, S. (2009). SERS not to be taken for granted in the presence of oxygen. Journal of the American Chemical Society, 131(22), 7480–7481.

    Article  Google Scholar 

  15. Matikainen, A., Nuutinen, T., Itkonen, T., Heinilehto, S., Puustinen, J., Hiltunen, J., et al. (2016). Atmospheric oxidation and carbon contamination of silver and its effect on surface-enhanced Raman spectroscopy (SERS). Scientific Reports, 6, 37192.

    Article  Google Scholar 

  16. Yu, W. W., & White, I. M. (2010). Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Analytical Chemistry, 82(23), 9626–9630.

    Article  Google Scholar 

  17. Eshkeiti, A., Narakathu, B. B., Reddy, A. S. G., Moorthi, A., Atashbar, M. Z., Rebrosova, E., et al. (2012). Detection of heavy metal compounds using a novel inkjet printed surface enhanced Raman spectroscopy (SERS) substrate. Sensors and Actuators B: Chemical, 171–172, 705–711.

    Article  Google Scholar 

  18. Yang, Q., Deng, M., Li, H., Li, M., Zhang, C., Shen, W., et al. (2015). Highly reproducible SERS arrays directly written by inkjet printing. Nanoscale, 7(2), 421–425.

    Article  Google Scholar 

  19. Miccichè, C., Arrabito, G., Amato, F., Buscarino, G., Agnello, S., & Pignataro, B. (2018). Inkjet printing Ag nanoparticles for SERS hot spots. Analytical Methods, 10(26), 3215–3223.

    Article  Google Scholar 

  20. Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997). Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653), 827–829.

    Article  Google Scholar 

  21. Yoo, K., Lee, W., Kang, K., Kim, I., Kang, D., Oh, D. K., et al. (2020). Low-temperature large-area fabrication of ZnO nanowires on flexible plastic substrates by solution-processible metal-seeded hydrothermal growth. Nano Convergence, 7, 24.

    Article  Google Scholar 

  22. Oh, D. K., Choi, H., Shin, H., Kim, K., Kim, M., & Ok, J. G. (2020). Tailoring zinc oxide nanowire architectures collectively by catalytic vapor-liquid-solid growth, catalyst-free vapor-solid growth, and low-temperature hydrothermal growth. Ceramics International. https://doi.org/10.1016/j.ceramint.2020.09.049.

    Article  Google Scholar 

  23. Patent, K. R. 10-0727434, 2007.

  24. Kang, B., Ko, S., Kim, J., & Yang, M. (2011). Microelectrode fabrication by laser direct curing of tiny nanoparticle self-generated from organometallic ink. Optics Express, 19(3), 2573–2579.

    Article  Google Scholar 

  25. Kang, B., Kno, J., & Yang, M. (2011). High-resolution and high-conductive electrode fabrication on a low thermal resistance flexible substrate. Journal of Micromechanics and Microengineering, 21(7), 075017.

    Article  Google Scholar 

  26. Chang, Y., Wang, D.-Y., Tai, Y.-L., & Yang, Z.-G. (2012). Preparation, characterization and reaction mechanism of a novel silver-organic conductive ink. Journal of Materials Chemistry, 22(48), 25296–25301.

    Article  Google Scholar 

  27. Kim, D., & Moon, J. (2005). Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochemical and Solid-State Letters, 8(11), J30–J33.

    Article  Google Scholar 

  28. Makrygianni, M., Kalpyris, I., Boutopoulos, C., & Zergioti, I. (2014). Laser induced forward transfer of Ag nanoparticles ink deposition and characterization. Applied Surface Science, 297, 40–44.

    Article  Google Scholar 

  29. Ferraria, A. M., Carapeto, A. P., & Rego, B. (2012). X-ray photoelectron spectroscopy: Silver salts revisited. Vacuum, 86(12), 1988–1991.

    Article  Google Scholar 

  30. Saini, G. S. S., Kaur, S., Tripathi, S. K., Mahajan, C. G., Thanga, H. H., & Verma, A. L. (2005). Spectroscopic studies of rhodamine 6G dispersed in polymethylcyanoacrylate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61(4), 653–658.

    Article  Google Scholar 

  31. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242–2250.

    Article  Google Scholar 

  32. Peters, R. J. B., van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P. F. G., Marvin, H. J. P., Weigel, S., et al. (2014). Characterization of titanium dioxide nanoparticles in food products: Analytical methods to define nanoparticles. Journal of Agricultural and Food Chemistry, 62(27), 6285–6293.

    Article  Google Scholar 

  33. Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735–758.

    Article  Google Scholar 

  34. Paul, T., Miller, P. L., & Strathmann, T. J. (2007). Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environmental Science & Technology, 41(13), 4720–4727.

    Article  Google Scholar 

  35. Armelao, L., Barreca, D., Bottaro, G., Gasparotto, A., Maccato, C., Maragno, C., et al. (2007). Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology, 18(37), 375709.

    Article  Google Scholar 

  36. Ohno, T., Sarukawa, K., Tokieda, K., & Matsumura, M. (2001). Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases. Journal of Catalysis, 203(1), 82–86.

    Article  Google Scholar 

  37. Lubas, M., Jasinski, J. J., Sitarz, M., Kurpaska, L., Podsiad, P., & Jasinski, J. (2014). Raman spectroscopy of TiO2 thin films formed by hybrid treatment for biomedical applications. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 867–871.

    Article  Google Scholar 

  38. Ohtani, B., Ogawa, Y., & Nishimoto, S. (1997). Photocatalytic activity of amorphous—anatase mixture of titanium (IV) oxide particles suspended in aqueous solutions. The Journal of Physical Chemistry B, 101(19), 3746–3752.

    Article  Google Scholar 

  39. Gao, L., & Zhang, Q. (2001). Effects of amorphous contents and particle size on the photocatalytic properties of TiO2 nanoparticles. Scripta Materialia, 44(8), 1195–1198.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the research fund of Hanbat National University in 2020, by Korea Research Institute of Standards and Science (KRISS-2020-GP2020-0004), and by the National Research Foundation of Korean government (2016M3A7B6908929, 2018M3D1A1058814, 2015R1A5A1037668, and 2020R1F1A1073760).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung-Sub Wi or Jong G. Ok.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding authors state that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wi, JS., Kim, J.D., Lee, W. et al. Inkjet−Printable Nanoporous Ag Disk Arrays Enabling Coffee−Ring Effect−Driven Analyte Enrichment Towards Practical SERS Applications. Int. J. of Precis. Eng. and Manuf.-Green Tech. 9, 421–429 (2022). https://doi.org/10.1007/s40684-021-00351-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-021-00351-6

Keywords

Navigation