Skip to main content
Log in

The Effect of Ni and Zr Additions on the Tensile Properties of Isothermally Aged Ai–Si–Cu–Mg Cast Alloys

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The present study was carried out to investigate the effects of Ni and Zr additions, individually or in combination, on the room-temperature tensile properties of 354 casting alloy (Al–9wt%Si–1.8wt%Cu–0.5wt%Mg) which was isothermally treated at temperatures in the range of 155–350 °C and aging times up to 1000 h. Tensile tests were carried out in the as-cast, solution heat-treated, and aged conditions using different aging times up to 1000 h. Quality charts were used as an evaluation tool for selecting the optimum conditions to achieve superior tensile properties and optimum quality in 354-type alloys. Zirconium reacts only with Ti, Si, and Al to form (Al,Si)2(Zr,Ti), (Al,Si)3(Zr,Ti), and Al3Zr phases. The beneficial effects of Zr and Ti additions appear in the refining of the α-Al grain size which reduces the size of the Al2Cu and α-Fe particles. Tensile test results at ambient temperature show a slight increase in alloys with Zr and Zr/Ni additions, particularly at aging temperatures above 240 ºC. It is suggested that the maximum obtainable quality index values by means of heat treatment are the difference between the quality index values for the as-cast and solution heat treatment conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

References

  1. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (Chapman and Hall, New York, 1992).

    Book  Google Scholar 

  2. D.R. Askeland, The Science and Engineering of Materials, 3rd edn. (Chapman and Hall, Boston, MA, 1996).

    Book  Google Scholar 

  3. D.R. Askeland, P.P. Fulay, W.J. Wright, The Science and Engineering of Materials, 6th edn. (CENGAGE Learning, Stamford, 2001), pp. 458–484

    Google Scholar 

  4. J. Hernandez-Sandoval, Improving the Performance of 354 Type Alloy, PhD. Thesis, Université du Québec à Chicoutimi, Chicoutimi, Quebec, Canada (2010).

  5. J.L. Jorstad, W.M. Rasmussen, D.L. Zalensas, Aluminum Casting Technology, 2nd edn. (The American Foundrymen’s Society Inc, Des Plaines, 1993).

    Google Scholar 

  6. S.C. Wang, M.J. Starink, N. Gao, Precipitation hardening in Al-Cu-Mg alloys revisited. Scripta Mater. 54(2006), 287–291 (2006)

    Article  CAS  Google Scholar 

  7. T. Gladman, Precipitation hardening in metals. Mater. Sci. Technol. 15, 30–36 (1999)

    Article  CAS  Google Scholar 

  8. H.R. Ammar, A.M. Samuel, F.H. Samuel, E. Simielli, G.K. Sigworth, J.C. Lin, Influence of Aging Parameters on the Tensile Properties and Quality Index of Al-9 Pct Si-1.8 Pct Cu-0.5 Pct Mg 354-Type Casting Alloys. Metall. Mater. Trans. A 43A, 61–73 (2012)

    Article  Google Scholar 

  9. R. Mahmudi, P. Sepehrband, H. Ghasemi, Improved properties of A319 aluminum casting alloy modified with Zr. Mater. Lett. 60(21), 2606–2610 (2006)

    Article  CAS  Google Scholar 

  10. K.E. Knipling, D.C. Dunand, D.N. Seidman, Criteria for developing castable, creep-resistant aluminum-based alloys–a review. Z. Met. 97(3), 246–265 (2006)

    CAS  Google Scholar 

  11. P. Nash, M.F. Singleton, J.L. Murray, ASM Handbook, Vol. 3: Alloy-Phase Diagrams, 10th edn. (ASM, Materials Park, 1992).

    Google Scholar 

  12. J.L. Murray, Alcoa, Alcoa Center PA, Private Communication, 2005.

  13. Z. Liu, Thermodynamics of nanoscale precipitate strengthened Fe-Cu and Al-Transition-Metal system from first principles calculations, PhD. Thesis, Northwestern University, Evanston, IL (2006).

  14. H.M. Medrano-Prieto, C.G. Garay-Reyes, C.D. Gómez-Esparza et al., Effect of nickel addition and solution treatment time on microstructure and hardness of Al – Si – Cu aged alloys. Mater. Charact. 120, 168–174 (2016)

    Article  CAS  Google Scholar 

  15. K.E. Knipling, Development of a nanoscale precipitation-strengthened creep-resistant aluminum alloy containing trialuminide precipitates, PhD Thesis, Northwestern University, Evanston, IL, (2006).

  16. M.H. Abdelaziz, Microstructural and mechanical characterization of transition elements-containing Al-Si-Cu-Mg Alloys for elevated-temperature applications, PhD Thesis, UQAC, Canada (2018)

  17. T. Tanaka, T. Akasawa, Machinability of hypereutectic silicon-aluminum alloys. J. Mater. Eng. Perform. 8(4), 463–468 (1999)

    Article  Google Scholar 

  18. M.E. Fine, Precipitation hardening of aluminum alloys. Metall. Trans. A 6(4), 625–630 (1975)

    Article  Google Scholar 

  19. Y.W. Kim, W.M. Griffith (eds.), Dispersion Strengthened Aluminum Alloys (TMS, Warrendale, 1988), pp. 217–242

    Google Scholar 

  20. J.A. Lee, P. Chen, High strength aluminum alloy for high temperature applications, US Patent No. 6918970, 2002.

  21. J.D. Robson, P.B. Pragnell, Modeling Al3Zr dispersoid precipitation in multicomponent aluminum alloys. Mater. Sci. Eng., A 352, 240–250 (2003)

    Article  Google Scholar 

  22. A.M. Samuel, H.W. Doty, S. Valtierra, F.H. Samuel, Defects related to incipient melting in Al-Si-Cu-Mg alloys. Mater. Des. 52, 947–956 (2013)

    Article  CAS  Google Scholar 

  23. M. Drouzy, S. Jacob, M. Richard, Interpretation of tensile results by means of quality index and probable yield strength-application to Al-Si7-Mg foundry alloys. Int. Cast Metals J. 5(2), 43–50 (1980)

    CAS  Google Scholar 

  24. M. Tiryakioglu, J.T. Staley, J. Campbell, Evaluating structural integrity of cast Al–7%Si–Mg alloys via work hardening characteristics II A new quality index. Mater. Sci. Eng. A 368, 231–238 (2004)

    Article  Google Scholar 

  25. C. Cáceres, A rationale for the quality index of Al-Si-Mg casting alloys. Int. J. Cast Met. Res. 12(6), 385–391 (2000)

    Article  Google Scholar 

  26. C. Cáceres, A Phenomenological approach to the quality index of Al-Si-Mg casting alloys. Int. J. Cast Met. Res. 12(6), 367–375 (2000)

    Article  Google Scholar 

  27. G.H. Garza-Elizondo, A.M. Samuel, S. Valtierra, F.H. Samuel, Effect of transition metals on the tensile properties of 354 alloy: role of precipitation hardening. Int. J. Metalcast. 11(3), 413–427 (2017). https://doi.org/10.1007/s40962-016-0074-y

    Article  Google Scholar 

  28. M.F. Ibrahim, G.H. Garza-Elizondo, A.M. Samuel, F.H. Samuel, Optimizing the heat treatment of high-strength 7075-type wrought alloys: a metallographic study. Int. J. Metalcast. 10(3), 264–275 (2016). https://doi.org/10.1007/s40962-016-0038-2

    Article  Google Scholar 

  29. M.H. Abdelaziz, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of extended thermal exposure and alloying elements on the morphology of eutectic Si in Al–Si cast alloys. Int. J. Metalcast. 14, 1013–1024 (2020). https://doi.org/10.1007/s40962-020-00411-8

    Article  CAS  Google Scholar 

  30. M.F. Ibrahim, A.M. Samuel, H.W. Doty, F.H. Samuel, Effect of aging conditions on precipitation hardening in Al–Si–Mg and Al–Si–Cu–Mg alloys. Int. J. Metalcast. 11(2), 274–286 (2017). https://doi.org/10.1007/s40962-016-0057-z

    Article  Google Scholar 

  31. J. Hernandez-Sandoval, A.M. Samuel, F.H. Samuel, S. Valtierra, Effect of additions of SiC and Al2O3 particulates on the microstructure and tensile properties of Al–Si–Cu–Mg cast alloys. Int. J. Metalcast. 10(3), 253–263 (2016). https://doi.org/10.1007/s40962-016-0035-5

    Article  Google Scholar 

  32. J. Gauthier, F.H. Samuel, Tensile properties and fracture behavior of solution-heat-treated 319.2 Al automotive alloy. AFS Trans. 103, 849–857 (1995)

    CAS  Google Scholar 

  33. MH Abdelaziz, A. M. Samuel, H. W. Doty, F. H. Samuel, Various aspects influencing the fracture behavior of impact tested Zr-containing Al-Si-Cu-Mg-354 type alloys, International Journal of Metalcasting, Pub Date : 2021-01-05 , DOI: https://doi.org/10.1007/s40962-020-00545-9

  34. P. Prasad, Characterization of new, cast, high temperature aluminum alloys for diesel engine applications, Master’s Thesis, University of Cincinnati, Cincinnati (2006).

  35. S.N. Naik, S.M. Walley, The Hall-Petch and inverse Hall-Petch relations and the hardness of nanocrystalline metals. J. Mater. Sci. 55, 2661–3268 (2020)

    Article  CAS  Google Scholar 

  36. J. Hernandez-Sandoval, G.H. Garza-Elizondo, A.M. Samuel, S. Valtierra, F.H. Samuel, The ambient and high temperature deformation behavior of Al-Si-Cu-Mg alloy with minor Ti, Zr, Ni additions. Mater. Des. 58, 89–101 (2014)

    Article  CAS  Google Scholar 

  37. S. Zhang, L. Pan, D. Huang et al., Effect of nickel alloying and mechanical stirring on the microstructure and mechanical properties of Al – 10% Si – 5% Cu alloy. Met. Sci. Heat Treat 61, 769–776 (2020). https://doi.org/10.1007/s11041-020-00498-0

    Article  CAS  Google Scholar 

  38. S. Manasijević, N. Dolić, K. Raić, R. Radiša, Identification of phases formed by Cu and Ni in Al−Si piston alloys. La Metall. Ital. 3, 11–17 (2014)

    Google Scholar 

  39. C.L. Chen, R.C. Thomson, The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multi-component Al–Si piston alloys. J. Alloy Comp 490, 293–300 (2010)

    Article  CAS  Google Scholar 

  40. L. Zuo, B. Ye, J. Feng, X. Xu, X. Kong, H. Jiang, Effect of δ-Al3CuNi phase and thermal exposure on microstructure and mechanical properties of Al-Si-Cu-Ni alloys. J. Alloy. Compd. 791, 1015–1024 (2019)

    Article  CAS  Google Scholar 

  41. H. Yang, D. Watson, Y. Wang, S. Ji (2014) Effect of nickel on the microstructure and mechanical property of die-cast Al–Mg–Si–Mn alloy. J. Mater. Sci. https://doi.org/10.1007/s10853-014-8551-2.

    Article  Google Scholar 

  42. J. Jung, S. Lee, J. Lee, Y. Cho, S. Kim, W. Yoon, Improved mechanical properties of near-eutectic Al-Si piston alloy through ultrasonic melt treatment. Mater. Sci. Eng., A 669, 187–195 (2016)

    Article  CAS  Google Scholar 

  43. N.E. Nwankwo, V.U. Nwoke, E.E. Nnuka, Effect of Ni-additions on the microstructure and mechanical properties of Fe-based chill-cast Al-Si alloys for production of pistons for automobile engine applications. Int. J. Sci. Res. Eng. Technol. 1, 21–27 (2015)

    Google Scholar 

  44. H. Ye, An overview of the development of Al-Si alloy based materials for engine applications. J. Mater. Eng. Perform. 12, 288–297 (2003)

    Article  CAS  Google Scholar 

  45. C.H. Caceres, T. Din, A.K.M.B. Rashid, J. Campbell, The effect of ageing on quality index of an Al-Cu casting alloy. Mater. Sci. Technol. 15, 711–716 (1999)

    Article  CAS  Google Scholar 

  46. C.H. Cáceres, J.A. Taylor, Enhanced ductility in Al-Si-Cu-Mg casting alloys with high Si content, in Shape Casting: The John Campbell Symposium. ed. by M. Tiryakiouglu, P. Crepeau (TMS, California, 2005), pp. 245–254

  47. C.T. Rios, R. Caram, C. Bolfarini, F.W.J. Botta, C.S. Kiminami, Intermetallic compounds in the Al-Si-Cu system. Acta Microscopia 12, 77–82 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. Samuel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez-Sandoval, J., Garza-Elizondo, G.H., Abdelaziz, M.H. et al. The Effect of Ni and Zr Additions on the Tensile Properties of Isothermally Aged Ai–Si–Cu–Mg Cast Alloys. Inter Metalcast 16, 435–457 (2022). https://doi.org/10.1007/s40962-021-00615-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00615-6

Keywords

Navigation