Skip to main content
Log in

Dynamic Visual Servoing of A 6-RSS Parallel Robot Based on Optical CMM

  • Short Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The parallel robots exhibit some outstanding properties on the repeatability, stiffness and force-to-weight ratio compared with serial robots. 6-DOF parallel robots have been utilized in various applications and the research on control design has attracted the attentions of researchers. However, the current Cartesian space path tracking performance of the parallel robots cannot meet the growing requirements from industry. In this paper, a dynamic sliding mode control (DSMC) scheme combined with the position-based visual servoing (PBVS) method is proposed to improve the tracking performance of the 6-Revolute-Spherical-Spherical (6-RSS) parallel robot based on the measurements from the optical coordinate measuring machine (CMM) sensor. By employing the CMM sensor, the pose of the parallel robot in Cartesian space can be estimated and incorporated in a closed-loop visual servoing control scheme in real time. The stability of the proposed DSMC has been proved by using Lyapunov theorem. The real-time experiment tests on a 6-RSS parallel robot demonstrate that the complex 6-dimension trajectory tracking can be achieved with high-accuracy. Compared with the classical kinematic level controllers, the proposed DSMC exhibits the superiority in terms of tracking performance and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

All authors Pengcheng Li, Tingting Shu, Wen-Fang Xie and Wei Tian guarantee that all data and materials as well as software application or custom code support our published claims and comply with field standards.

References

  1. Merlet, J.-P.: Parallel robots. Springer Science & Business Media, Berlin (2012). https://doi.org/10.1007/1-4020-4133-0

    MATH  Google Scholar 

  2. Miletović, I., Pool, D.M., Stroosma, O., van Paassen, M.M., Chu, Q.P.: Improved stewart platform state estimation using inertial and actuator position measurements. Control. Eng. Pract. 62, 102–115 (2017). https://doi.org/10.1016/j.conengprac.2017.03.006

    Article  Google Scholar 

  3. Fan, S., Fan, S., Lan, W., Song, G.: A new approach to enhance the stiffness of heavy-load parallel robots by means of the component selection. Robot. Comput. Integr. Manuf. 61, 101834 (2020). https://doi.org/10.1016/j.rcim.2019.101834

    Article  Google Scholar 

  4. Bai, S., Teo, M.Y.: Kinematic calibration and pose measurement of a medical parallel manipulator by optical position sensors. J. Robot. Syst. 20 (4), 201–209 (2003). https://doi.org/10.1002/rob.10081

    Article  Google Scholar 

  5. Wang, J., Masory, O.: On the accuracy of a stewart platform. i. the effect of manufacturing tolerances. In: Proceedings of IEEE international conference on robotics and automation, Atlanta, USA, pp 114–120. IEEE (1993). https://doi.org/10.1109/ROBOT.1993.291970

  6. Andreff, N., Dallej, T., Martinet, P.: Image-based visual servoing of a gough-stewart parallel manipulator using leg observations. Int. J. Robot. Res. 26(7), 677–687 (2007). https://doi.org/10.1177/0278364907080426

    Article  Google Scholar 

  7. Raghavan, M.: The stewart platform of general geometry has 40 configurations. J. Mech. Des. 115(2), 277–282 (1993). https://doi.org/10.1115/1.2919188

    Article  Google Scholar 

  8. Abdellatif, H., Heimann, B.: Advanced model-based control of a 6-dof hexapod robot A case study. IEEE/ASME Trans. Mechatron. 15(2), 269–279 (2010). https://doi.org/10.1109/Tmech.2009.2024682

    Article  Google Scholar 

  9. Guo, HongBo, Liu, YongGuang, Liu, GuiRong, Li, HongRen: Cascade control of a hydraulically driven 6-dof parallel robot manipulator based on a sliding mode. Control Eng. Pract. 16(9), 1055–1068 (2008). https://doi.org/10.1016/j.conengprac.2007.11.005

    Article  Google Scholar 

  10. Andreff, N., Martinet, P.: Unifying kinematic modeling, identification, and control of a gough–stewart parallel robot into a vision-based framework. IEEE Trans. Robot. 22 (6), 1077–1086 (2006). https://doi.org/10.1109/TRO.2006.882931

    Article  Google Scholar 

  11. Yang, C., Huang, Q., Han, J.: Decoupling control for spatial six-degree-of-freedom electro-hydraulic parallel robot. Robot. Comput. Integr. Manuf. 28(1), 14–23 (2012). https://doi.org/10.1016/j.rcim.2011.06.002

    Article  Google Scholar 

  12. Dahmouche, R., Andreff, N., Mezouar, Y., Ait-Aider, O., Martinet, P.: Dynamic visual servoing from sequential regions of interest acquisition. Int. J. Robot. Res. 31(4), 520–537 (2012). https://doi.org/10.1177/0278364911436082

    Article  Google Scholar 

  13. Andreff, N., Martinet, P.: Visually servoing a gough-stewart parallel robot allows for reduced and linear kinematic calibration. In: Proceedings of the second international conference on informatics in control, pp 119–124. Barcelona, Spain (2005). https://doi.org/10.5220/0001174301190124

  14. Hashimoto, K.: A review on vision-based control of robot manipulators. Adv. Robot. 17(10), 969–991 (2003). https://doi.org/10.1163/156855303322554382

    Article  Google Scholar 

  15. Chaumette, F., Hutchinson, S.: Visual servo control. i. basic approaches. IEEE Robot. Autom. Mag. 13(4), 82–90 (2006). https://doi.org/10.1109/MRA.2006.250573

    Article  Google Scholar 

  16. Andreff, N., Martinet, P.: Vision-based self-calibration and control of parallel kinematic mechanisms without proprioceptive sensing. Intell. Serv. Robot. 2(2), 71–80 (2009). https://doi.org/10.1007/s11370-009-0034-y

    Article  Google Scholar 

  17. Shu, T., Gharaaty, S., Xie, W.F., Joubair, A., Bonev, I.A.: Dynamic path tracking of industrial robots with high accuracy using photogrammetry sensor. IEEE/ASME Trans. Mechatron. 23(3), 1159–1170 (2018). https://doi.org/10.1109/Tmech.2018.2821600

    Article  Google Scholar 

  18. Li, P., Zeng, R., Xie, Wen F., Zhang, X.: Relative posture-based kinematic calibration of a 6-rss parallel robot by optical coordinate measurement machine. Int. J. Adv. Robot. Syst. 15(2), 1729881418765861 (2018). https://doi.org/10.1177/1729881418765861

    Google Scholar 

  19. Li, P., Ghasemi, A., Xie, W.F., Tian, W.: Visual closed-loop dynamic model identification of parallel robots based on optical cmm sensor. Electronics 8(8), 836 (2019). https://doi.org/10.3390/electronics8080836

    Article  Google Scholar 

  20. Trasloheros, A., Sebastián, J.M., Torrijos, J., Carelli, R., Roberti, F.: Using a 3dof parallel robot and a spherical bat to hit a ping-pong ball. Int. J. Adv. Robot. Syst. 11(5), 76 (2014). https://doi.org/10.5772/58526

    Article  Google Scholar 

  21. Coronado, E., Maya, M., Cardenas, A., Guarneros, O., Piovesan, D.: Vision-based control of a delta parallel robot via linear camera-space manipulation. J. Intell. Robot. Syst. 85(1), 93–106 (2017). https://doi.org/10.1007/s10846-016-0413-5

    Article  Google Scholar 

  22. Briot, S., Martinet, P., Rosenzveig, V.: The hidden robot: an efficient concept contributing to the analysis of the controllability of parallel robots in advanced visual servoing techniques. IEEE Trans. Robot. 31(6), 1337–1352 (2015). https://doi.org/10.1109/Tro.2015.2489499

    Article  Google Scholar 

  23. Qi, Z., McInroy, J.E.: Improved image based visual servoing with parallel robot. J. Intell. Robot. Syst. 53(4), 359–379 (2008). https://doi.org/10.1007/s10846-008-9245-2

    Article  Google Scholar 

  24. Paccot, F., Lemoine, P., Andreff, N., Chablat, D., Martinet, P.: A vision-based computed torque control for parallel kinematic machines. In: Proceedings of IEEE international conference on robotics and automation, Pasadena, USA, pp 1556–1561. IEEE (2008). https://doi.org/10.1109/ROBOT.2008.4543423

  25. Pi, Y., Wang, X.: Trajectory tracking control of a 6-dof hydraulic parallel robot manipulator with uncertain load disturbances. Control. Eng. Pract. 19(2), 185–193 (Feb 2011). https://doi.org/10.1016/j.conengprac.2010.11.006

    Article  Google Scholar 

  26. Qi, Z., McInroy, J.E., Jafari, F.: Trajectory tracking with parallel robots using low chattering, fuzzy sliding mode controller. J. Intell. Robot. Syst. 48(3), 333–356 (2007). https://doi.org/10.1007/s10846-006-9084-y

    Article  Google Scholar 

  27. Zhao, Y.M., Lin, Y., Xi, F., Guo, S., Ouyang, P.: Switch-based sliding mode control for position-based visual servoing of robotic riveting system. J. Manuf. Sci. Eng. 139(4). https://doi.org/10.1115/1.4034681 (2017)

  28. Parsapour, M., RayatDoost, S., Taghirad, H.D.: Position based sliding mode control for visual servoing system. In: Proceedings of the first RSI/ISM international conference on robotics and mechatronics, Tehran, Iran, pp 337–342. IEEE (2013). https://doi.org/10.1109/ICRoM.2013.6510129

  29. Grotjahn, M., Heimann, B., Abdellatif, H.: Identification of friction and rigid-body dynamics of parallel kinematic structures for model-based control. Multibody Syst. Dyn. 11(3), 273–294 (2004). https://doi.org/10.1023/B:MUBO.0000029426.05860.c2

    Article  MathSciNet  Google Scholar 

  30. Hartley, R.I., Sturm, P.: Triangulation. Comput. Vis. Image Understand. 68(2), 146–157 (1997). https://doi.org/10.1006/cviu.1997.0547

    Article  Google Scholar 

  31. Kanatani, K., Sugaya, Y., Niitsuma, H.: Triangulation from two views revisited: Hartley-sturm vs. optimal correction. In: Proceedings of the 19th British machine vision conference, pp 173–182. BMVA, Leeds (2008). https://doi.org/10.5244/C.22.18

  32. Wilson, W.J., Hulls, C.C.W., Bell, G.S.: Relative end-effector control using cartesian position based visual servoing. IEEE Trans. Robot. Autom. 12(5), 684–696 (Oct 1996). https://doi.org/10.1109/70.538974

    Article  Google Scholar 

  33. Yuan, J.S.C.: A general photogrammetric method for determining object position and orientation. IEEE Trans. Robot. Autom. 5(2), 129–142 (1989). https://doi.org/10.1109/70.88034

    Article  Google Scholar 

  34. Belanger, P.R., Dobrovolny, P., Helmy, A., Zhang, X.: Estimation of angular velocity and acceleration from shaft-encoder measurements. Int. J. Robot. Res. 17(11), 1225–1233 (1998). https://doi.org/10.1177/027836499801701107

    Article  Google Scholar 

  35. Wang, C., Lin, C.-Y., Tomizuka, M.: Statistical learning algorithms to compensate slow visual feedback for industrial robots. J. Dy.n Syst. Meas. Control 137(3), 031011 (2015). https://doi.org/10.1115/1.4027853

    Article  Google Scholar 

  36. Simon, D.: Optimal state estimation: Kalman, H infinity, and nonlinear approaches. Wiley, Hoboken (2006). https://doi.org/10.1002/0470045345.ch11

    Book  Google Scholar 

Download references

Acknowledgements

This project was funded by the Natural Sciences and Engineering Research Council (NSERC) and the Fonds de recherche du Québec-Natrue et technologies (FRQNT).

Funding

This work was supported by Natural Sciences and Engineering Research Council of Canada (NSERC, Manu 602), Creaform, GE Aviation, and Consortium de Recherche et D’Innovation en Aérospatiale au Quebec (CRIAQ).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Pengcheng Li, Tingting Shu, Wen-Fang Xie and Wei Tian. The first draft of the manuscript was written by Pengcheng Li and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wen-Fang Xie.

Ethics declarations

Conflict of Interests

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Shu, T., Xie, WF. et al. Dynamic Visual Servoing of A 6-RSS Parallel Robot Based on Optical CMM. J Intell Robot Syst 102, 40 (2021). https://doi.org/10.1007/s10846-021-01402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01402-5

Keywords

Navigation