Skip to main content
Log in

Synthesis and Stimuli-Responsive Properties of Metallo-Supramolecular Phosphazene Polymers Based on Terpyridine Metal Complexes

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this study, terpyridine functionalized phosphazene based metallo-supramolecular polymers were synthesized by three step reaction method. In the first step, 4′-(4-aminophenyl)-2,2′:6′,2′′-terpyridine was synthesized with p-nitro benzaldehyde and 2-acetylpyridine. Then, the monomer containing six terpyridine (TPY) units attached to the phosphazene was prepared from 4′-(4-aminophenyl)-2,2′:6′,2′′-terpyridine and hexachlorocyclotriphosphazene by a condensation reaction. Finally, metallo-supramolecular phosphazene polymers were synthesised with these TPY functional phosphazenes and different transition metal ions (Cu, Co, Ni, and Zn ions). Prepared metallo-supramolecular polymers containing phosphazene unit were investigated by elemental analysis, different spectroscopic methods, energy dispersive X-ray spectrometry (EDX) and thermal analysis techniques. The stimuli-responsive, optoelectronic and spectroscopic properties of the synthesised metallo-supramolecular phosphazene polymers were investigated for external effects with UV–Vis spectroscopy and electro-analytic techniques. In addition, competitive ligand effect on these metallo-supramolecular polymers was examined with ethylenediaminetetraacetic acid (EDTA). The resulting metallo-supramolecular polymers containing phosphazene unit show very fast stimuli-responsive properties, such as 3 s. they also showed a single reversible redox structure resulting from the bonding of homometallic segments to polymer chain. In addition, they showed d-π transition (in the range of λ = 330–550 nm) depending on the metal (Co, Ni and Zn) ion forming the supramolecular structure. The addition of competing EDTA ligands caused the degradation of metallo-supramolecular polymer structures. These metallo-supramolecular phosphazene polymers are a good alternative smart material for opto-electronic, electrochromic, photochromic and intelligent material applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L.A. Dobrzański, J. Mater. Process. Technol. 75(1–3), 133–148 (2006)

    Article  Google Scholar 

  2. R. Pietschnig, in Smart inorganic polymers. ed. by E. Hey-Hawkins, M. Hissler (Wiley-VCH, Weinheim, 2019), pp. 1–16

    Google Scholar 

  3. U. Jeong, Y. Yin, Adv. Funct. Mater. 30(2), 1907059 (2020)

    Article  CAS  Google Scholar 

  4. A.J. Boydston, B. Cao, A. Nelson, R.J. Ono, A. Saha, J.J. Schwartz, C.J. Thrasher, J. Mater. Chem. A 6, 20621–20645 (2018)

    Article  CAS  Google Scholar 

  5. S. Köytepe, M.H. Demirel, A. Gültek, T. Seçkin, Polym. Int. 63(4), 778–787 (2014)

    Article  Google Scholar 

  6. J. Vicens, Q. Vicens, J. Incl. Phenom. Macrocycl. Chem. 65, 221–235 (2009)

    Article  CAS  Google Scholar 

  7. J.M. Lehn, Rep. Progress Phys. 67, 249–265 (2004)

    Article  Google Scholar 

  8. R. Dong, Y. Zhou, X. Huang, X. Zhu, Y. Lu, J. Shen, Adv. Mater. 27, 498–526 (2015)

    Article  CAS  Google Scholar 

  9. S. Das, M. Presselt, J. Mater. Chem. C 7, 6194–6216 (2019)

    Article  CAS  Google Scholar 

  10. H.Q. Peng, L.Y. Niu, Y.Z. Chen, L.Z. Wu, C.H. Tung, Q.Z. Yang, Chem. Rev. 115(15), 7502–7542 (2015)

    Article  CAS  Google Scholar 

  11. A. Gugliuzza, in Smart membranes and sensors. ed. by A. Gugliuzza (John Wiley & Sons Inc, Hoboken, 2014), pp. 107–144

    Google Scholar 

  12. P.H. Dinolfo, J.T. Hupp, Chem. Mater. 13(10), 3113–3125 (2001)

    Article  CAS  Google Scholar 

  13. A.J. Savyasachi, O. Kotova, S. Shanmugaraju, S.J. Bradberry, G.M. Ó’Máille, T. Gunnlaugsson, Chem. 3(5), 764–811 (2017)

    Article  CAS  Google Scholar 

  14. U.S. Schubert, C. Eschbaumer, Angew. Chem. Int. Ed. 41(16), 2892–2926 (2002)

    Article  CAS  Google Scholar 

  15. H. Hofmeier, U.S. Schubert, Chem. Soc. Rev. 33(6), 373–399 (2004)

    Article  CAS  Google Scholar 

  16. M.R. Saboktakin, R.M. Tabatabaei, Int. J. Biol. Macromol. 75, 426–436 (2015)

    Article  CAS  Google Scholar 

  17. H.J. Yoon, W.D. Jang, J. Mater. Chem. 20, 211–222 (2010)

    Article  CAS  Google Scholar 

  18. N.M. Sangeetha, U. Maitra, Chem. Soc. Rev. 34(10), 821–836 (2005)

    Article  CAS  Google Scholar 

  19. A.R. Hirst, B. Escuder, J.F. Miravet, D.K. Smith, Angew. Chem. Int. Ed. 47(42), 8002–8018 (2008)

    Article  CAS  Google Scholar 

  20. N.M. Sangeetha, U. Maitra, Chem. Soc. Rev. 34, 821–836 (2005)

    Article  CAS  Google Scholar 

  21. S. Chaterji, I.K. Kwon, K. Park, Progress Polym. Sci. 32(8–9), 1083–1122 (2007)

    Article  CAS  Google Scholar 

  22. A. Noro, M. Hayashi, Y. Matsushita, Soft Matter 8, 6416–6429 (2012)

    Article  CAS  Google Scholar 

  23. J.Y.C. Lim, Q. Lin, K. Xue, X.J. Loh, Mater. Today Adv. 3, 100021 (2019)

    Article  Google Scholar 

  24. J.M. Knipe, N.A. Peppas, Regen. Biomater. 1(1), 57–65 (2014)

    Article  Google Scholar 

  25. A. Zulys, D.M.A. Ovika, Mater. Sci. Eng. 188, 012036 (2017)

    Google Scholar 

  26. S. Köytepe, M.H. Demirel, T. Seçkin, J. Inorg. Organomet. Polym. Mater. 23(5), 1104–1112 (2013)

    Article  Google Scholar 

  27. E.M. Hahn, N. Estrada-Ortiz, J. Han, V.F.C. Ferreira, T.G. Kapp, J.G.D. Correia, A. Casini, F.E. Kühn, Eur. J. Inorg. Chem. 12, 1667–1672 (2017)

    Article  Google Scholar 

  28. N. Dhiman, P. Mohanty, New J. Chem. 43, 16670–16675 (2019)

    Article  CAS  Google Scholar 

  29. S. Ture, R. Gurbanov, Phosphorus Sulfur Silicon Relat. Elem. 193(10), 620–629 (2018)

    Article  CAS  Google Scholar 

  30. M.H. Demirel, S. Köytepe, A. Gültek, T. Seçkin, J. Polym. Res. 21(2), 345 (2014)

    Article  Google Scholar 

  31. B. Çoşut, S. Yeşilot, Polyhedron 35(1), 101–107 (2012)

    Article  Google Scholar 

  32. S. Seo, J. Lee, S.Y. Choi, H. Lee, J. Mater. Chem. 22, 1868–1875 (2012)

    Article  CAS  Google Scholar 

  33. S. Sezer, S. Köytepe, T. Seçkin, J. Inorg. Organomet. Polym. Mater. 28(6), 2825–2834 (2018)

    Article  Google Scholar 

  34. M. Chiper, M.A.R. Meier, J.M. Kranenburg, U.S. Schubert, Macromol. Chem. Phys. 208, 679–689 (2007)

    Article  CAS  Google Scholar 

  35. R. Dobrawa, F. Wurthner, J. Polym. Sci. Part A 43, 4981–4995 (2005)

    Article  CAS  Google Scholar 

  36. J. Hoque, N. Sangaj, S. Varghese, Macromol. Biosci. 19(1), 1800259 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully to Scientific and Technical Research Council of Turkey, TUBITAK Research Fund (Project No: 115R023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turgay Seçkin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sezer, S., Köytepe, S., Gültek, A. et al. Synthesis and Stimuli-Responsive Properties of Metallo-Supramolecular Phosphazene Polymers Based on Terpyridine Metal Complexes. J Inorg Organomet Polym 31, 3389–3405 (2021). https://doi.org/10.1007/s10904-021-02008-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02008-y

Keywords

Navigation