Skip to main content
Log in

First-principles investigation of F-functionalized ZGNR/AGNR for nanoscale interconnect applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Zigzag and armchair graphene nanoribbons (ZGNR and AGNR) have been investigated using the density functional theory (DFT) and nonequilibrium Green’s function (NEGF) framework. Based on binding energy calculations, both-edge-F-functionalized ZGNR emerges as the most thermostatically and energetically stable among various ZGNR and AGNR configurations. The band structures and density of states (DOS) reveal that all the examined configurations of ZGNR exhibit metallic behavior. The IV characteristics of both-edge-F-functionalized ZGNR shows pure linear behavior among all the configurations of ZGNR and AGNR. For interconnect modeling, the small-signal dynamic performance parameters RBq, CBq, and Lkq are calculated using the standard two-probe model. Furthermore, both-edge-F-functionalized ZGNR shows lower values of CBq (98.07pF/cm), Lkq (45.38nH/\(\mu \)m) and quantum delay (42.17\(\mu \)s) due to the higher Fermi velocity. The impact of variation of the contact length and ribbon length on the both-edge-F-functionalized ZGNR interconnect model is also presented. F-functionalized ZGNR is a potential candidate for use in future low-power nanoscale high-speed interconnect applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cao, W., Kang, J., Sarkar, D., Liu, W., Banerjee, K.: 2D semiconductor FETs-projections and design for sub-10 nm VLSI. IEEE Trans. Electron Devices 62(11), 3459–3469 (2015)

    Article  Google Scholar 

  2. Chhowalla, M., Jena, D., Zhang, H.: Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1(11), 1–15 (2016)

    Article  Google Scholar 

  3. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  4. Geim, A.K., Novoselov, K.S.: The rise of graphene. In: Rodgers, P. (ed.) Nanoscience and technology: a collection of reviews from nature journals, pp. 11–19. World Scientific, Singapore (2010)

    Google Scholar 

  5. Taur, Y., Buchanan, D.A., Chen, W., Frank, D.J., Ismail, K.E., Lo, S.H., Sai-Halasz, G.A., Viswanathan, R.G., Wann, H.J., Wind, S.J., et al.: Cmos scaling into the nanometer regime. Proc. IEEE 85(4), 486–504 (1997)

    Article  Google Scholar 

  6. Sevinçli, H., Topsakal, M., Ciraci, S.: Superlattice structures of graphene-based armchair nanoribbons. Phys. Rev. B 78(24), (2008)

    Article  Google Scholar 

  7. Finkenstadt, D., Pennington, G., Mehl, M.: From graphene to graphite: a general tight-binding approach for nanoribbon carrier transport. Phys. Rev. B 76(12), (2007)

    Article  Google Scholar 

  8. Jaiswal, N.K., Srivastava, P.: First principles calculations of armchair graphene nanoribbons interacting with Cu atoms. Phys. E Low Dimens. Syst. Nanostruct. 44(1), 75–79 (2011)

    Article  Google Scholar 

  9. Hassan, A., Hossain, M.F., Rana, M.S., Kouzani, A.Z.: Theoretical study of quantum capacitance and associated delay in armchair-edge graphene nanoribbons. Int. J. Comput. Mater. Sci. Eng. 4(03), 1550019 (2015)

    Google Scholar 

  10. Poliki, M., Haji-Nasiri, S.: Electronic and transport characteristics of vacancy and nitrogen-doped graphene nanoribbon rotational switch. Appl. Phys. A 125(9), 1–17 (2019)

    Article  Google Scholar 

  11. Kang, J., Wu, F., Li, J.: Doping induced spin filtering effect in zigzag graphene nanoribbons with asymmetric edge hydrogenation. Appl. Phys. Lett. 98(8), (2011)

    Article  Google Scholar 

  12. Jaiswal, N.K., Tyagi, N., Kumar, A., Srivastava, P.: Inducing half-metallicity with enhanced stability in zigzag graphene nanoribbons via fluorine passivation. Appl. Surf. Sci. 396, 471–479 (2017)

    Article  Google Scholar 

  13. Bhandary, S., Penazzi, G., Fransson, J., Frauenheim, T., Eriksson, O., Sanyal, B.: Controlling electronic structure and transport properties of zigzag graphene nanoribbons by edge functionalization with fluorine. J. Phys. Chem. C 119(36), 21227–21233 (2015)

    Article  Google Scholar 

  14. Jha, K.K., Tyagi, N., Jaiswal, N.K., Srivastava, P.: Structural and electronic properties of armchair graphene nanoribbons functionalized with fluorine. Phys. Lett. A 383(32), (2019)

    Article  Google Scholar 

  15. Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., et al.: Fluorographene: a two-dimensional counterpart of teflon. Small 6(24), 2877–2884 (2010)

    Article  Google Scholar 

  16. Baraket, M., Walton, S., Lock, E., Robinson, J., Perkins, F.: The functionalization of graphene using electron-beam generated plasmas. Appl. Phys. Lett. 96(23), (2010)

    Article  Google Scholar 

  17. Withers, F., Russo, S., Dubois, M., Craciun, M.F.: Tuning the electronic transport properties of graphene through functionalisation with fluorine. Nanoscale Res. Lett. 6(1), 1–11 (2011)

    Article  Google Scholar 

  18. Lee, W.H., Suk, J.W., Chou, H., Lee, J., Hao, Y., Wu, Y., Piner, R., Akinwande, D., Kim, K.S., Ruoff, R.S.: Selective-area fluorination of graphene with fluoropolymer and laser irradiation. Nano Lett. 12(5), 2374–2378 (2012)

    Article  Google Scholar 

  19. Jaiswal, N.K.: Tailoring the electronic properties of zigzag graphene nanoribbons via sp2/sp3 edge functionalization with h/f. Org. Electron. 51, 25–37 (2017)

    Article  Google Scholar 

  20. Min, Y., Fang, J., Zhong, C., Dong, Z., Chen, C., Yao, K.: Disconnect armchair carbon nanotube as rectifier predicted by first-principles study. Comput. Mater. Sci. 81, 418–422 (2014)

    Article  Google Scholar 

  21. Min, Y., Fang, J., Dong, Z., Zhong, C., Chen, C., Yao, K.: Disconnected zigzag carbon nanotube as spin valve and spin filter predicted by first-principles study. Phys. B Condens. Matter 430, 40–44 (2013)

    Article  Google Scholar 

  22. Yamacli, S.: Investigation and comparison of the large-signal characteristics and dynamical parameters of silicene and germanene nanoribbon interconnects. Comput. Mater. Sci. 141, 353–359 (2018)

    Article  Google Scholar 

  23. Brandbyge, M., Mozos, J.L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(16), (2002)

    Article  Google Scholar 

  24. Cornean, H.D., Jensen, A., Moldoveanu, V.: A rigorous proof of the Landauer–Büttiker formula. J. Math. Phys. 46(4), (2005)

    Article  MathSciNet  Google Scholar 

  25. Sharma, V., Srivastava, P., Jaiswal, N.K.: Edge-oxidized germanene nanoribbons for nanoscale metal interconnect applications. IEEE Trans. Electron Devices 65(9), 3893–3900 (2018)

    Article  Google Scholar 

  26. Jaiswal, N.K., Srivastava, P.: Electronic properties of armchair graphene nanoribbons doped with cobalt atoms. In: IOP Conference Series: Materials Science and Engineering, vol. 73, p. 012140. IOP Publishing (2015)

  27. Areshkin, D.A., Nikolić, B.K.: I- v curve signatures of nonequilibrium-driven band gap collapse in magnetically ordered zigzag graphene nanoribbon two-terminal devices. Phys. Rev. B 79(20), (2009)

    Article  Google Scholar 

  28. Berahman, M., Sheikhi, M.: Transport properties of zigzag graphene nanoribbon decorated with copper clusters. J. Appl. Phys. 116(9), (2014)

    Article  Google Scholar 

  29. Hu, H., Zhao, Z., Zhang, R., Bin, Y., Qiu, J.: Polymer casting of ultralight graphene aerogels for the production of conductive nanocomposites with low filling content. J. Mater. Chem. A 2(11), 3756–3760 (2014)

    Article  Google Scholar 

  30. Oostinga, J.B., Heersche, H.B., Liu, X., Morpurgo, A.F., Vandersypen, L.M.: Gate-induced insulating state in bilayer graphene devices. Nat. Mater. 7(2), 151–157 (2008)

    Article  Google Scholar 

  31. Li, X.F., Liu, L., Yan, Q., Li, Q.K., Wang, Y., Deng, M., Qiu, Q.: Strong current polarization and perfect negative differential resistance in few-FeN4-embedded zigzag graphene nanoribbons. Phys. Chem. Chem. Phys. 19(4), 2674–2678 (2017)

    Article  Google Scholar 

  32. Kheirabadi, S.J., Ghayour, R., Sanaee, M.: Negative differential resistance effect in different structures of armchair graphene nanoribbon. Diam. Relat. Mater. 108, (2020)

    Article  Google Scholar 

  33. Chen, T., Guo, C., Xu, L., Li, Q., Luo, K., Liu, D., Wang, L., Long, M.: Modulating the properties of multi-functional molecular devices consisting of zigzag gallium nitride nanoribbons by different magnetic orderings: a first-principles study. Phys. Chem. Chem. Phys. 20(8), 5726–5733 (2018)

    Article  Google Scholar 

  34. Sharma, V., Srivastava, P.: Probing gold-doped germanene nanoribbons for nanoscale interconnects under DFT-NEGF framework. J. Electron. Mater. 49(6), 3938–3946 (2020)

    Article  Google Scholar 

  35. Guo, J., Yoon, Y., Ouyang, Y.: Gate electrostatics and quantum capacitance of graphene nanoribbons. Nano Lett. 7(7), 1935–1940 (2007)

    Article  Google Scholar 

  36. Mao, L.F.: Quantum capacitance of the armchair-edge graphene nanoribbon. Pramana 81(2), 309–317 (2013)

    Article  Google Scholar 

  37. Hossain, M.F., Hassan, A., Rana, M.S.: Theoretical investigation of quantum capacitance in armchair-edge graphene nanoribbons. In: 2013 International Conference on Electrical Information and Communication Technology (EICT), pp. 1–6. IEEE (2014)

  38. Ariel, V., Natan, A.: Electron effective mass in graphene. In: 2013 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 696–698. IEEE (2013)

Download references

Acknowledgements

The authors thank PDPM-Indian Institute of Information Technology, Design and Manufacturing Jabalpur for providing the computational facilities and Indian Institute of Information Technology Vadodara for infrastructural facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Jha.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest, financial or otherwise.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jatkar, M., Jha, K.K. & Patra, S.K. First-principles investigation of F-functionalized ZGNR/AGNR for nanoscale interconnect applications. J Comput Electron 20, 1461–1470 (2021). https://doi.org/10.1007/s10825-021-01714-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01714-7

Keywords

Navigation