Skip to main content
Log in

Synthesis, Structure and Magnetic Studies of a Ni(II) Coordination Polymer Constructed from Asymmetrical Tetracarboxylic Acid and N-Donor Ligand

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

One new tri-nuclear nickel(II) coordination polymer, namely, [Ni3(μ3-O)(as-H2bptc)2(4,4′-bpy)2(H2O)4]n (H4bptc = 2,3,3′,4′-biphenyl tetracarboxylic acid, and 4,4′-bpy = 4,4′-bipyridine) has been synthesised under hydrothermal conditions, and its structure and properties have been characterised by X-ray single-crystal and powder diffraction, infrared spectrum analysis, elemental analysis, thermogravimetric analysis and magnetic susceptibility analysis. The single-crystal diffraction results showed that complex crystallised in the C2/c monoclinic space group was a 3D structure with tri-nuclear Ni(II) secondary building units, in which metal cations were in octahedral coordination geometries. The powder X-ray diffraction indicated that the complex was a pure phase and thermal analysis showed the excellent thermal stability of the complex. Additionally, variable temperature (2–300 K) magnetic measurements indicated antiferromagnetic coupling or spin inclination behaviour in the Ni3 core in the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. R. Kim, T. Uemura, and S. Kitagawa (2016). Chem. Soc. Rev. 45, 3828–3845.

    CAS  PubMed  Google Scholar 

  2. S. S. Chen, L. Q. Sheng, Y. Zhao, Z. D. Liu, R. Qiao, and S. Yang (2016). Cryst. Growth Des. 16, 229–241.

    CAS  Google Scholar 

  3. D. Chisca, L. Croitor, E. B. Coropceanu, O. Petuhov, G. F. Volodina, S. G. Baca, K. Krämer, J. Hauser, S. Decurtins, S. X. Liuand, and M. S. Fonari (2016). Cryst. Growth Des. 16, 7011–7024.

    CAS  Google Scholar 

  4. J. Zhou and B. Wang (2017). Chem. Soc. Rev. 46, 6927–6945.

    CAS  PubMed  Google Scholar 

  5. D. D. Yang, L. P. Lu, and M. L. Zhu (2020). Acta Crystallogr. C C76, 763–770.

    Google Scholar 

  6. S. Goswami, G. Leitus, K. B. Tripuramallu, and I. Goldberg (2017). Cryst. Growth Des. 17, 4393–4404.

    CAS  Google Scholar 

  7. Z. Z. Zhang, G. H. Lee, and C. I. Yang (2018). Dalton Trans. 47, 16709–16722.

    CAS  PubMed  Google Scholar 

  8. S. Thakurta, M. Maiti, R. J. Butcher, C. J. Gómez-García, and A. A. Tsaturyan (2021). Dalton Trans. 50, 2200–2209.

    CAS  PubMed  Google Scholar 

  9. H. S. Wang, Y. Chen, Z. B. Hu, K. Zhang, Z. Zhang, Y. Song, and Z. Q. Pan (2020). N. J. Chem. 44, 16302–16310.

    CAS  Google Scholar 

  10. S. D. Li, L. P. Lu, S. S. Feng, and M. L. Zhu (2019). J. Solid State Chem. 269, 56–64.

    CAS  Google Scholar 

  11. X. L. Gao, M. R. Han, H. F. Ren, and S. S. Feng (2021). Chin. J. Inorg. Chem. 37, 375–384.

    Google Scholar 

  12. Y. B. Huang, J. Liang, X. S. Wang, and R. Cao (2017). Chem. Soc. Rev. 46, 126–157.

    CAS  PubMed  Google Scholar 

  13. F. Guo, S. Yang, Y. Liu, P. Wang, J. Huang, and W. Y. Sun (2019). ACS Catal. 9, 8464–8470.

    CAS  Google Scholar 

  14. D. D. Yang, L. P. Lu, S. S. Feng, and M. L. Zhu (2020). Dalton Trans. 49, 7514–7524.

    CAS  PubMed  Google Scholar 

  15. S. Chen, Z. Shi, L. Qin, H. Jia, and H. Zheng (2017). Cryst. Growth Des. 17, 67–72.

    CAS  Google Scholar 

  16. L. M. Fan, F. Wang, D. S. Zhao, X. H. Sun, H. T. Chen, H. W. Wang, and X. T. Zhang (2020). Spectrochim. Acta A 239, 118467.

    CAS  Google Scholar 

  17. L. M. Fan, D. S. Zhao, B. Li, X. Chen, F. Wang, Y. X. Deng, Y. L. Niu, and X. T. Zhang (2021). CrystEngComm 23, 1218–1225.

    CAS  Google Scholar 

  18. L. M. Fan, F. Wang, D. S. Zhao, Y. X. Peng, Y. X. Deng, Y. W. Luo, and X. T. Zhang (2020). Appl. Organomet. Chem. 34, e5960.

    CAS  Google Scholar 

  19. Y. J. Zhao, S. J. Hou, D. H. Liu, and C. L. Zhong (2018). Ind. Eng. Chem. Res. 57, 15132–15137.

    CAS  Google Scholar 

  20. W. J. Rieter, K. M. Pott, K. M. L. Taylor, and W. Lin (2008). J. Am. Chem. Soc. 130, 11584–11585.

    CAS  PubMed  Google Scholar 

  21. Q. Chen, W. Xue, J. B. Lin, Y. S. Wei, Z. Yin, M. H. Zeng, M. Kurmoo, and X. M. Chen (2016). Chem. Eur. J. 22, 12088–12094.

    CAS  PubMed  Google Scholar 

  22. J. Wang, B. H. Li, L. Lu, J. Q. Liu, H. Sakiyama, and A. Kumar (2017). Dalton Trans. 46, 15178–15180.

    CAS  PubMed  Google Scholar 

  23. S. S. Feng, L. Xie, L. P. Lu, M. L. Zhu, and F. Su (2018). J. Solid State Chem. 258, 335–345.

    CAS  Google Scholar 

  24. D. D. Yang, L. P. Lu, and M. L. Zhu (2019). Dalton Trans. 48, 10220–10234.

    CAS  PubMed  Google Scholar 

  25. D. D. Yang, L. P. Lu, and M. L. Zhu (2019). Acta Crystallogr. C C75, 1580–1592.

    Google Scholar 

  26. D. D. Yang, L. P. Lu, and M. L. Zhu (2020). CrystEngComm 22, 5207–5217.

    CAS  Google Scholar 

  27. D. D. Yang, X. X. Liu, L. P. Lu, and M. L. Zhu (2020). CrystEngComm 22, 8088–8099.

    CAS  Google Scholar 

  28. Q. Yue, X. Liu, W. X. Guo, and E. Q. Gao (2018). CrystEngComm 20, 4258–4267.

    CAS  Google Scholar 

  29. F. Meier and D. Loss (2003). Physica B 1140, 329–333.

    Google Scholar 

  30. L. Bogani and W. Wernsdorfer (2008). Nat. Mater. 7, 179–186.

    CAS  PubMed  Google Scholar 

  31. P. Ghorai, A. Dey, P. Brandão, S. Benmansour, C. J. G. García, P. P. Ray, and A. Saha (2020). Inorg. Chem. 59, 8749–8761.

    CAS  PubMed  Google Scholar 

  32. M. N. Leuenberger and D. Loss (2001). Nature 410, 789–793.

    CAS  PubMed  Google Scholar 

  33. M. J. Zhou, B. Li, L. Liu, Y. L. Feng, and J. Z. Guo (2014). CrystEngComm 16, 10034–10039.

    CAS  Google Scholar 

  34. L. N. Li, S. Y. Wang, T. L. Chen, Z. H. Sun, J. H. Luo, and M. C. Hong (2012). Cryst. Growth Des. 12, 4109–4115.

    CAS  Google Scholar 

  35. N. F. Li, Y. M. Han, J. N. Li, J. P. Cao, Z. Y. Du, and Y. Xu (2020). RSC Adv. 10, 33628–33634.

    CAS  Google Scholar 

  36. S. F. Hojati, A. S. Kaheh, M. Moosavifar, and F. Daghestani (2021). J Clust Sci. https://doi.org/10.1007/s10876-021-02063-y.

    Article  Google Scholar 

  37. L. Yang, S. H. Zhang, W. Wang, J. J. Guo, Q. P. Huang, R. X. Zhao, C. L. Zhang, and G. Muller (2014). Polyhedron 74, 49–56.

    CAS  Google Scholar 

  38. R. Herchel, I. Nemec, M. Machata, and Z. Travnicek (2016). Dalton Trans. 45, 18622–18634.

    CAS  PubMed  Google Scholar 

  39. Z. H. Weng, S. H. Zhang, W. Wang, J. J. Guo, and H. Hai (2015). J. Clust. Sci. 26, 1129–1142.

    CAS  Google Scholar 

  40. J. W. Shin, A. R. Jeong, S. Y. Lee, C. Kim, S. Hayami, and K. S. Min (2016). Dalton Trans. 45, 14089–14100.

    CAS  PubMed  Google Scholar 

  41. P. Mukherjee, M. G. Drew, C. J. Gomez-Garcia, and A. Ghosh (2009). Inorg. Chem. 11, 4817–4827.

    Google Scholar 

  42. N. Guillou, S. Pastre, C. Livage, and G. Férey (2002). Chem. Commun. 20, 2358–2359.

    Google Scholar 

  43. C. D. Wu, C. Z. Lu, S. F. Lu, H. H. Zhuang, and J. S. Huang (2002). Inorg. Chem. Commun. 2, 171–174.

    CAS  Google Scholar 

  44. X. D. Zhu, Y. Li, J. G. Gao, F. H. Wang, Q. H. Li, H. X. Yang, and L. Chen (2017). J. Mol. Struct. 1130, 89–95.

    CAS  Google Scholar 

  45. S. S. Feng, L. P. Lu, M. L. Zhu, L. Du, Y. B. Zhang, and T. W. Wang (2009). Dalton Trans. 32, 6385–6395.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Shanxi Province (Grant Nos. 201901D111014 and 201901D211145), the Scientific and Technological Innovation Project of the Higher Education Institutions of Shanxi Province, STIP (Grant No. 2019L0086); and the Shanxi Scholarship Council of China (2020-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Si-Si Feng or Li-Ping Lu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary information (ESI) available: Materials and measurements, X-ray crystallography. CCDC 2067704.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 139 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, MR., Kong, XJ., Feng, SS. et al. Synthesis, Structure and Magnetic Studies of a Ni(II) Coordination Polymer Constructed from Asymmetrical Tetracarboxylic Acid and N-Donor Ligand. J Clust Sci 33, 809–814 (2022). https://doi.org/10.1007/s10876-021-02088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02088-3

Keywords

Navigation