Skip to main content
Log in

Influence of Argon Gas Flow Parameters in the Slot Plug on the Flow Behavior of Molten Steel in a Gas-Stirred Ladle

  • Review
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

A mathematical model of argon gas flow in a slot plug was developed to investigate the flow parameters of the argon gas at the exit of the slot plug. Gas compressibility and the heat transfer between argon gas and the plug have been considered in the model. The simulated velocity and density of argon gas at the plug exit were different from the calculated results obtained in previous studies. Velocity measurements of the argon gas at the exit verified the simulated results. Another mathematical model of argon gas stirring in a ladle with velocities and densities of the injected argon gas at the plug exit from the simulation and previous studies was established. The results of the model of argon gas stirring showed that the velocity and density of the argon gas at the plug exit affect the simulated results of the velocity of molten steel and the uniformity of the velocity distribution of the molten steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Luo W, and Zhu M, Metall Mater Trans B 45 (2014) 1706.

    Article  Google Scholar 

  2. Venturini G, and Goldschmit M, Metall Mater Trans B 38 (2007) 461.

    Article  Google Scholar 

  3. Mattias E K, Wu L, Valentin P, and Sichen D, Steel Res Int 8 (2010) 1056.

    Google Scholar 

  4. Bellot J P, Kroll-Rabotin J S, Gisselbrecht M, Joishi M, Saxena A, Sanders S, Jardy A, Materials 11 (2018) 1179.

    Article  Google Scholar 

  5. Cao Q, and Nastac L, Ironmak Steelmak 45 (2018) 984.

    Article  CAS  Google Scholar 

  6. Duan H, Zhang L, and Thomas B G, Steel Res Int 90 (2019) 1800288.

    Article  Google Scholar 

  7. Castillejos A H, Salcudean M E, and Brimacombe J K, Metall Mater Trans B 20 (1989) 603.

    Article  Google Scholar 

  8. Turkoglu H, and Farouk B, Metall Mater Trans B 21 (1990) 771.

    Article  Google Scholar 

  9. Turkoglu H, and Farouk B, Numer Heat Tr A-Appl 21 (1992) 377.

    Article  CAS  Google Scholar 

  10. Li L, and Li B, JOM 68 (2016) 2160.

    Article  CAS  Google Scholar 

  11. Li L, Liu Z, Cao M, and Li B, JOM 67 (2015) 1459.

    Article  CAS  Google Scholar 

  12. Li L, Li B, and Liu Z Q, ISIJ Int 57 (2017) 1980.

    Article  CAS  Google Scholar 

  13. Liu H, Qi Z, and Xu M, Steel Res Int 82 (2011) 440.

    Article  CAS  Google Scholar 

  14. Liu W, Tang H, Yang S, Wang M, Li J, Liu Q, and Liu J, Metall Mater Trans B, 49 (2018) 2681.

    Article  CAS  Google Scholar 

  15. Li B, Yin H, Zhou C, and Tsukihashi F, ISIJ Int 48 (2008) 1704.

    Article  CAS  Google Scholar 

  16. Li L, Liu Z, Li B, Matsuura H, and Tsukihashi F, ISIJ Int 55 (2015) 1337.

    Article  CAS  Google Scholar 

  17. Themelis N J, Tarassoff P, and Szekely J, Trans Metall Soc AIME (2019) 2425.

  18. Su C, Chou J, and Liu S, Mate Trans, (2010) 1007261132.

  19. Shui L, Cui Z, Ma X, Rhamdhani M A, Nguyen A V, and Zhao B, Metall Mater Trans B 46 (2015) 1218.

    Article  CAS  Google Scholar 

  20. Zhu M, Inomoto T, Sawada I, and Hsiao T, ISIJ Int 35 (1995) 472.

    Article  CAS  Google Scholar 

  21. Kapusta J P. JOM, 69 (2017) 970.

    Article  CAS  Google Scholar 

  22. Jiang X, Cui Z, Chen M, and Zhao B, Metall Mater Trans B 50 (2019) 173.

    Article  CAS  Google Scholar 

  23. Patil S P, Satish D, Peranandhanathan M, and Mazumdar D, ISIJ Int 50 (2010) 1117.

    Article  CAS  Google Scholar 

  24. Amaro-Villeda A M, Ramirez-Argaez M A, and Conejo A N, ISIJ Int 54 (2014) 1.

    Article  CAS  Google Scholar 

  25. Krishnapisharody K, and Irons G A, Metall Mater Trans B 44 (2013) 1486.

    Article  CAS  Google Scholar 

  26. Liu Z, Li L, and Li B, ISIJ Int 57 (2017) 1971.

    Article  CAS  Google Scholar 

  27. Liu Z, Li B, Jiang M, and Tsukihashi F, ISIJ Int 53 (2013) 484.

    Article  CAS  Google Scholar 

  28. Liu Z Q, Qi F S, Li B K, and Cheung S C P, Int J Multipha Flow (2016) 190.

  29. Liu Z, Li L, Qi F, Li B, Jiang M, and Tsukihashi F, Metall Mater Trans B 46 (2015) 406.

    Article  CAS  Google Scholar 

  30. Cai H, He Z, Pan L, Lu J, Jin S, and Li Y, Refractories 50 (2016) 269.

    Google Scholar 

  31. Sutherland W J, Philos Mag Ser 1 36 (1893) 507.

  32. Ren Y, Zhang L, and Li Y, J Iron Steel Res Int, 26 (2014) 28.

    CAS  Google Scholar 

  33. Johansen S T, and Boysan F, Metall Mater Trans B 19 (1988) 755.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 51834002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiongming Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, R., Zhang, L., Yin, Y. et al. Influence of Argon Gas Flow Parameters in the Slot Plug on the Flow Behavior of Molten Steel in a Gas-Stirred Ladle. Trans Indian Inst Met 74, 1827–1837 (2021). https://doi.org/10.1007/s12666-021-02266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02266-x

Keywords

Navigation