Skip to main content

Advertisement

Log in

Multiple Estuarine Gradients Influencing Tidal Flat Benthic Algal Biomass and Community Structure in the Yaquina Estuary, OR, USA

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Tidal flat is often the dominant habitat type in US Pacific Northwest (PNW) estuaries. This research examined environmental factors that explain the spatial patterns of microphytobenthos (MPB) biomass and community structure in a PNW estuary with complex nutrient dynamics. MPB biomass, individual species abundances, diatom community metrics, and diatom community structure were strongly correlated with distance from the estuary mouth, salinity, substrate composition, and pore water-soluble reactive phosphorus (SRP). The microphytobenthos was dominated by diatoms and diatom diversity and species richness were negatively associated with salinity, substrate sand content, and pore water SRP. Diatom community structure varied with estuary position, with the epipsammic taxa Catenula adhaerens, Opephora spp. 1, and Planothidium delicatulum dominating the assemblage at sites near the estuary mouth and epipelic taxa, such as Nitzschia frustulum and Nitzschia palea, being more abundant at sites in the middle and upper estuary. Distance from the estuary mouth and salinity were the most important predictors of diatom assemblage structure, based on CCA analysis. MPB biomass was highest at sites in the lower estuary, characterized by higher salinities, SRP, and substrate sand composition. Pore water nitrogen and surrounding land use were not important predictors of MPB biomass or community structure. We attribute our findings to the nutrient dynamics of Yaquina estuary, which is high in nutrients due to both coastal upwelling and watershed-derived nitrate and exhibits an increasing gradient of phosphorus towards the estuary mouth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Admiraal, W. 1976. Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Mar. Biol. 39: 1–9.

    Article  Google Scholar 

  • Admiraal, W. 1977. Tolerance of estuarine benthic diatoms to high concentrations of ammonia, nitrite ion, nitrate ion and orthophosphate. Mar. Biol. 43 (4): 307–315.

    Article  CAS  Google Scholar 

  • Admiraal, W. 1984. The ecology of estuarine sediment inhabiting diatoms. Prog Phycol Res 3: 269–270.

    Google Scholar 

  • Admiraal, W., and H. Peletier. 1979. Influence of organic compounds and light limitation on the growth rate of estuarine benthic diatoms. Br J Phycol 14 (3): 197–206.

    Article  Google Scholar 

  • Admiraal, W., and H. Peletier. 1980. Influence of seasonal variations of temperature and light on the growth rate of cultures and natural populations of intertidal diatoms. Mar. Ecol. Prog. Ser. 2: 35–43.

    Article  Google Scholar 

  • Amspoker, M.C. 1977. The distribution of intertidal epipsammic diatoms on Scripps Beach, La Jolla, California, USA. Botanica Marina XX: 227–232.

    Google Scholar 

  • Amspoker, M.C., and C.D. McIntire. 1978. Distribution of intertidal diatoms associated with sediments in Yaquina estuary, Oregon. J. Phycol. 14 (4): 387–295.

    Article  Google Scholar 

  • Barbier, E.B., S.D. Hacker, C. Kennedy, E.M. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81 (2): 169–193.

    Article  Google Scholar 

  • Bárcena, M.A., and F. Abrantes. 1998. Evidence of a high-productivity area off the coast of Málaga from studies of diatoms in surface sediments. Mar. Micropaleontol. 35 (1-2): 91–103.

    Article  Google Scholar 

  • Billerbeck, M., H. Røy, K. Bosselmann, and M. Huettel. 2007. Benthic photosynthesis in submerged Wadden Sea intertidal flats. Estuar. Coast. Shelf Sci. 71 (3-4): 704–716.

    Article  Google Scholar 

  • Brophy, L. 2005. Tidal wetland prioritization for the Siuslaw River estuary. Oregon: Prepared for Siuslaw Watershed Council.

  • Brotas, V., and F. Catarino. 1995. Microphytobenthos primary production of Tagus estuary intertidal flats (Portugal). Neth. J. Aquat. Ecol. 29 (3-4): 333–339.

    Article  CAS  Google Scholar 

  • Brown, C.A., W.G. Nelson, B.L. Boese, T.H. DeWitt, P.M. Eldridge, J.E. Kaldy, H. Lee II, J.H. Power, and D.R. Young. 2007. An approach to developing nutrient criteria for Pacific Northwest estuaries: a case study of Yaquina estuary, Oregon. USEPA Office of Research and Development, National Health and Environmental Effects Laboratory, Western Ecology Division. EPA/600/R-07/046.

  • Brown, C.A., and R.J. Ozretich. 2009. Coupling between the coastal ocean and Yaquina bay, Oregon: Importance of oceanic inputs relative to other nitrogen sources. Estuar. Coasts 32 (2): 219–237.

    Article  CAS  Google Scholar 

  • Cadée, G.C., and J. Hegeman. 1974. Primary production of the benthic microflora living on tidal flats in the Dutch Wadden Sea. Neth. J. Sea Res. 8 (2-3): 260–291.

    Article  Google Scholar 

  • Cahoon, L.B., J.E. Nearhoof, and C.L. Tilton. 1999. Sediment grain size effect on benthic microalgal biomass in shallow ecosystems. Estuaries 22 (3): 735–741.

    Article  Google Scholar 

  • Cahoon, L.B., R.S. Redman, and C.R. Tronzo. 1999. Benthic microalgal biomass in the sediments of Onslow Bay, North Carolina. Estuar. Coast. Shelf Sci. 31: 805–816.

    Article  Google Scholar 

  • Christianen, M.J.A., J.J. Middelburg, S.J. Holtuijsen, J. Jouta, T.J. Compton, T. Van Der Heide, T. Piersma, J.S. Sinninghe Damsté, H.W. Van Der Veer, S. Schouten, and H. Olff. 2017. Benthic primary producers are key to sustain the Wadden Sea food web: stable carbon isotope analysis at landscape scale. Ecology 98 (6): 1498–1512.

    Article  CAS  Google Scholar 

  • Clesceri, L.S., A.E. Greenberg, and A.D. Eaton. 1998. Standard methods for the examination of water and wastewater. Twentieth ed. Maryland: American Public Health Association.

  • Colijn, F., and K.S. Dijkema. 1981. Species composition of benthic diatoms and distribution of chlorophyll a on an intertidal flat in the Dutch Wadden Sea. Mar. Ecol. Prog. Ser. 4: 9–21.

    Article  Google Scholar 

  • Cooper, S.R. 1995. A 2,500-year history of anoxia and eutrophication in Chesapeake Bay. Estuaries 16: 617–626.

    Article  Google Scholar 

  • Costa-Böddeker, S., L.X. Thuyên, A. Schwarz, H.D. Huy, and A. Schwalb. 2017. Diatom assemblages in surface sediments along nutrient and salinity gradients of Thai Vai estuary and can Gio mangrove forest, southern Vietnam. Estuar. Coasts 40 (2): 479–492.

    Article  CAS  Google Scholar 

  • Currin, C.A., S.Y. Newell, and H.W. Paerl. 1995. The role of standing dead Spartina alterniflora and benthic microalgae in salt-marsh food webs–considerations based on multiple stable isotope analysis. Mar. Ecol. Prog. Ser. 121: 99–116.

    Article  Google Scholar 

  • da Silva, M.J., S. Cruz, and P. Cartaxana. 2017. Inorganic carbon availability in benthic diatom communities: photosynthesis and migration. Philos. Trans. R. Soc. B 372: 1728. https://doi.org/10.1098/rstb.2016.039820160398.

    Article  CAS  Google Scholar 

  • Davis, M.W., and C.D. McIntire. 1983. Effects of physical gradients on the production dynamics of sediment-associated algae. Mar. Ecol. Prog. Ser. 13: 103–114.

    Article  CAS  Google Scholar 

  • de Jonge, V.N., and J. van den Bergs. 1987. Experiments on the resuspension of estuarine sediments containing benthic diatoms. Estuar. Coast. Shelf Sci. 24 (6): 725–740.

    Article  Google Scholar 

  • Denys, L. 1991. A check-list of the diatoms in the Holocene deposits of the western Belgian coastal plain with a survey of their apparent ecological requirements. I. Introduction, ecological code and complete list. Ministère des Affaires Economiques – Service Géologique de Belgique.

  • Desianti, N., M.D. Enache, M. Griffiths, K. Bisku, A. Degan, M. DaSilva, D. Millemann, L. Lippincott, E. Watson, A. Gray, D. Nikitina, and M. Potapova. 2019. The potential and limitations of diatoms as environmental indicators in mid-Atlantic coastal wetlands. Estuaries Coasts 42 (6): 1440–1458. https://doi.org/10.1007/s12237-019-00603-4.

    Article  CAS  Google Scholar 

  • Desianti, N., M. Potapova, M. Enache, T.J. Belton, D.J. Velinsky, R. Thomas, and J. Mead. 2017. Sediment diatoms as environmental indicators in New Jersey coastal lagoons. J. Coast. Res. 78: 127–140.

    Article  CAS  Google Scholar 

  • FGDC (Federal Geographic Data Committee). 2013. Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013. Second edition. Wetlands subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC.

  • Halpern, B.S., S. Walbridge, K.A. Selkoe, and C.V. Kappel. 2008. A global map of human impact on marine ecosystems. Science 319 (5865): 948–952.

    Article  CAS  Google Scholar 

  • Hargrave, B.T., N.J. Prouse, G.A. Phillips, and P.A. Neame. 1983. Primary production and respiration in pelagic and benthic communities at two intertidal sites in the upper bay of Fundy. Can. J. Fish. Aquat. Sci. 40: 229–243.

    Article  Google Scholar 

  • Herman, P.M.J., J.J. Middelburg, J. Widdows, C.H. Lucas, and C.H.R. Heip. 2000. Stable isotopes as trophic tracers: combining field sampling and manipulative labelling of food resources for macrobenthos. Mar. Ecol. Prog. Ser. 204: 79–92.

    Article  CAS  Google Scholar 

  • Hickey, B.M., and N.S. Banas. 2003. Oceanography of the US Pacific northwest coastal ocean and estuaries with application to coastal ecology. Estuaries 26 (4): 1010–1031.

    Article  Google Scholar 

  • Hill, B.H., and J.P. Kurtenbach. 2009. Correlations of sedimentary diatoms with watershed land use and limnological conditions in northern New Jersey Lakes. Lake Reservoir Manage. 17: 105–120.

    Article  Google Scholar 

  • Husson, F., J. Josse, S. Le, and J. Mazet. 2020. Package ‘FactoMineR”. https://cran.r-project.org/web/packages/FactoMineR/FactoMineR.pdf

  • Janousek, C.N. 2009. Taxonomic composition and diversity of microphytobenthos in southern California marine wetland habitats. Wetlands 29 (1): 163–175.

    Article  Google Scholar 

  • Janousek, C.N., C.A. Currin, and L.A. Levin. 2009. Succession of microphytobenthos in a restored coastal wetland. Estuar. Coasts 30: 265–276.

    Article  Google Scholar 

  • Janssen, M., M. Hurst, E. Rhiel, and W.E. Krumbein. 1999. Vertical migration behaviour of diatom assemblages of Wadden Sea sediments (Dangast, Germany): a study using cryo-scanning electron microscopy. Int. Microbiol. 2 (2): 103–110.

    CAS  Google Scholar 

  • Jordan, T.E., J.C. Cornwell, W.R. Boyton, and J.T. Anderson. 2008. Changes in phosphorus biogeochemistry along an estuarine salinity gradient: the iron conveyer belt. Limnol. Oceanogr. 53 (1): 172–184.

    Article  CAS  Google Scholar 

  • Juggins, S. 1992. Diatoms in the Thames estuary, England: ecology, paleoecology, and salinity transfer function. In Biblotheca Diatomologica band 25, ed. H. Lange-Bertalot. Berlin: J. Cramer.

    Google Scholar 

  • Kang, C.K., Y.W. Lee, E.J. Choy, J.K. Shin, I.S. Seo, and J.S. Hong. 2006. Microphytobenthos seasonality determines growth and reproduction in intertidal bivalves. Mar. Ecol. Prog. Ser. 315: 113–127.

    Article  Google Scholar 

  • Kassambara, A., and F. Mundt. 2020. Package ‘factoextra’. https://cran.r-project.org/web/packages/factoextra/factoextra.pdf

  • Kentula, M.E., and T.H. DeWitt. 2003. Abundance of seagrass (Zostera marina L.) and macroalgae in relation to the salinity-temperature gradient in Yaquina Bay, Oregon, USA. Estuaries 26 (4): 1130–1141.

    Article  Google Scholar 

  • Kim, H.-K., I.-H. Cho, E.-A. Hwang, Y.-J. Kim, and B.-H. Kim. 2019. Benthic diatom communities in Korean estuaries: species appearances in relation to environmental variables. Int. J. Environ. Res. Public Health 16 (15). https://doi.org/10.3390/ijerph16152681.

  • Kim, H.-K., Y.-S. Kwon, Y.-J. Kim, and B.-H. Kim. 2015. Distribution of epilithic diatoms in estuaries of the Korean peninsula in relation to environmental variables. Water 7 (12): 6702–6718.

    Article  CAS  Google Scholar 

  • Kramer, K., and H. Lange-Bertalot. 1986. Susswasserflora von mitteleuropa: Bacillariophyceae, part 1. Naviculaceae. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Kramer, K., and H. Lange-Bertalot. 1988. Susswasserflora von mitteleuropa: Bacillariophyceae, part 2. Epithemiaceae, bacillariophyceae, surirellaceae. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Kramer, K., and H. Lange-Bertalot. 1991a. Susswasserflora von mitteleuropa: Bacillariophyceae, part 3. Centrales, fragilariaceae, eunotiaceae, achnanthaceae. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Kramer, K., and H. Lange-Bertalot. 1991b. Susswasserflora von mitteleuropa: Bacillariophyceae, part 4. Achnanthaceae. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Kramer, K., and H. Lange-Bertalot. 2000. Susswasserflora von mitteleuropa: Bacillariophyceae, part 5. English and French translation of keys. Heidelberg: Spektrum Akademischer Verlag.

    Google Scholar 

  • Lee, H. II, C.A. Brown, B.L. Boese, and D.R. Young, eds. 2006. Proposed classification scheme for coastal receiving waters based on SAV and food web sensitivity to nutrients, volume 2: nutrient drivers, seagrass distributions, and regional classifications of Pacific Northwest estuaries. USEPA Office of Research and Development, National Health and Environmental Effects Laboratory. Internal Report.

  • Lemagie, E.P., and J.A. Lerczak. 2014. A comparison of bulk estuarine turnover timescales to particle tracking timescales using a model of the Yaquina Bay estuary. Estuar. Coasts 38: 1797–1814.

    Article  Google Scholar 

  • Longphuirt, S.N., J. Clavier, J. Grall, L. Chauvaud, F. Le Loch, I. Le Berre, J. Flye-Sainte-Marie, J. Richard, and A. Leynaert. 2007. Primary production and spatial distribution of subtidal microphytobenthos in a temperate coastal system, the bay of Brest, France. Estuar. Coast. Shelf Sci. 74 (3): 367–380.

    Article  Google Scholar 

  • Lorenzen, C.J. 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol. Oceanogr. 12 (2): 343–346. https://doi.org/10.4319/lo.1967.12.2.0343.

    Article  CAS  Google Scholar 

  • Lotze, H.K., H.S. Lenihan, B.J. Bourque, R.H. Bradbury, R.G. Cooke, M.C. Kay, S.M. Kidwell, M.X. Kirby, C.H. Peterson, and J.B.C. Jackson. 2006. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312 (5781): 1806–1809.

    Article  CAS  Google Scholar 

  • MacIntyre, H.L., R.J. Geider, and D.C. Miller. 1996. Microphytobenthos: the ecological role of the “secret garden” of un-investigated shallow water marine habitats. I. Distribution, abundance and primary production. Estuaries 19 (2): 186–201.

    Article  Google Scholar 

  • Manoylov, K.M., Y.E. France, A. Geletu, and J.N. Dominy Jr. 2016. Algal community membership of estuarine mudflats from the Savannah River, United States. J. Mar. Sci. Eng. 4 (1). https://doi.org/10.3390/jmse4010011.

  • McGlathery, K.J., K. Sundbäck, and P. Fong. 2013. Estuarine benthic algae. In Estuarine ecology, ed. J.W. Day Jr., B.C. Crump, W.M. Kemp, and A. Yáńez-Arancibia. Hoboken: Wiley-Blackwell.

    Google Scholar 

  • McIntire, C.D. 1973. Diatom associations in Yaquina estuary, Oregon: a multivariate analysis. J. Phycol. 9: 254–259.

    Article  Google Scholar 

  • McIntire, C.D. 1978. The distribution of estuarine diatoms along environmental gradients: a canonical correlation. Estuar. Coast. Mar. Sci. 6 (5): 447–457.

    Article  Google Scholar 

  • McIntire C.D., and W. S. Overton. 1971. Distributional patterns in assemblages of attached diatoms from Yaquina Estuary, Oregon. Ecology 52: doi:https://doi.org/10.2307/1936024

  • McKew, B.A., J.D. Taylor, T.J. McGenity, and G.J.C. Underwood. 2011. Resistance and resilience of benthic biofilm communities from a temperate saltmarsh to desiccation and rewetting. ISME J 5 (1): 30–41.

    Article  Google Scholar 

  • Middelburg, J.J., C. Barranguet, H.T.S. Boschker, P.M.J. Herman, T. Moens, and C.H.R. Heip. 2000. The fate of intertidal microphytobenthos carbon: an in situ C-13-labeling study. Limnol. Oceanogr. 45: 224–1234.

    Article  Google Scholar 

  • Millennium Ecosystems Assessment. 2005a. Ecosystems and human well-being: wetlands and water synthesis. Washington D.C.: World Resources Institute.

    Google Scholar 

  • Millennium Ecosystems Assessment. 2005b. Ecosystems and human well-being: synthesis. Washington D.C.: Island Press.

    Google Scholar 

  • MLRC. 2001. NLCD land cover (CONSUS) 2001 data. https://www.mrlc.gov/data. Accessed 2010.

  • Mote, P.W., J. Abatzoglou, K.D. Dello, K. Hegewisch, and D.E. Rupp. 2019. Fourth Oregon climate assessment report. Oregon Climate Change Research Institute. occri.net/ocar4.

  • Naymik, J., Y. Pan, and J. Ford. 2005. Diatom assemblages as indicators of timber harvest effects in coastal Oregon streams. J. N. Am. Benthol. Soc. 24 (3): 569–584.

    Article  Google Scholar 

  • Nedwell, D.B., and M. Trimmer. 1996. Nitrogen fluxes through the upper estuary of the great Ouse, England: the role of the bottom sediments. Mar. Ecol. Prog. Ser. 142: 273–286.

    Article  CAS  Google Scholar 

  • Nelson, A.R., and K. Kashima. 1993. Diatom zonation in southern Oregon tidal marshes relative to vascular plants, foraminifera, and sea level. J. Coast. Res. 9: 673–697.

    Google Scholar 

  • Nilsson, P., B. Jönsson, I.L. Swanberg, and K. Sundbäck. 1991. Response of a marine shallow-water sediment system to an increased load of inorganic nutrients. Mar. Ecol. Prog. Ser. 71: 275–290.

    Article  Google Scholar 

  • NOAA. 2012. Tide tables 2012 - west coast of north and south American including the Hawaiian islands. US Department of Commerce.

  • NOAA. 2013. National coastal population report: Population trends from 1970–2020. National Oceanographic and Atmospheric Administration.

  • Ogilvie, B., D.B. Nedwell, R.M. Harrison, A. Robinson, and A. Sage. 1997. High nitrate, muddy estuaries as nitrogen sinks: the nitrogen budget of the river Colne estuary (United Kingdom). Mar. Ecol. Prog. Ser. 150: 217–228.

    Article  CAS  Google Scholar 

  • Oh, S.-H., and C.-H. Koh. 1995. Distribution of diatoms in the surficial sediments of the Mangyung-Dongjin tidal flat, west coast of Korea (eastern Yellow Sea). Mar. Biol. 122 (3): 487–496.

    Article  Google Scholar 

  • Ohmann, J.L., and M.J. Gregory. 2002. Predictive mapping for forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, U.S.A. Can. J. For. Res. 32: 725–741.

    Article  Google Scholar 

  • Oksanen, J. 2010. Multivariate analysis of ecological communities in R: vegan tutorial. http://phylodiversity.net/azanne/csfar/images/8/85/Vegan.pdf

  • Oksanen, J., F.G. Blanchet, R. Kindt, P. Legendre, P.R. Minchin, R.B. O’Hara, G.L. Simpson, P. Solymos, M. Henry, H. Stevens, and H. Wagner. 2013. Package ‘Vegan’. ISBN 0-387-95457-0.

  • ORDEQ. 2005. Yaquina Bay. Oregon geographic response plan. State of Oregon Department of Environmental Quality.

  • Pan, Y., A. Herlihy, P. Kaufmann, J. Wigington, J. van Sickle, and T. Moser. 2004. Linkages among land-use, water quality, physical habitat conditions and lotic diatom assemblages: a multispatial scale assessment. Hydrobiologia 515 (1-3): 59–73.

    Article  Google Scholar 

  • Peletier, H. 1996. Long-term changes in intertidal estuarine diatom assemblages related to reduced input of organic waste. Mar. Ecol. Prog. Ser. 137: 265–271.

    Article  Google Scholar 

  • Pinckney, J., and R.G. Zingmark. 1993. Biomass and production of benthic microalgae communities in estuarine habitats. Estuaries 16 (4): 887–897.

    Article  CAS  Google Scholar 

  • R Core Development Team. 2018. R: a language and environment for statistical computing. R Foundation for statistical computing. Vienna: R Foundation for Statistical Computing. URL http://www.R-project.org/

  • Retallack, G.J., D.G. Gavin, E.B. Davis, N.D. Sheldon, J.M. Erlandson, M.H. Reed, E.A. Bestland, J.J. Roering, R.J. Carson, and R.B. Mitchells. 2016. Oregon 2100: projected climatic and ecological changes. Bulletin no. 26, Museum of Natural History, University of Oregon.

  • Ribeiro, L., V. Brotas, Y. Rincé, and B. Jesus. 2013. Structure and diversity of intertidal benthic diatom assemblages in contrasting shores: a case study from the Tagus estuary. J. Phycol. 49 (2): 258–270.

    Article  Google Scholar 

  • Ripley, B., B. Venables, D.M. Bates, K. Hornik, A. Gebhardt, and D. Firth. 2018. Package ‘MASS’. http://www.stats.ox.ac.uk/pub/MASS4/.

  • Riznyk, R.Z. 1973. Interstitial diatoms from two tidal flats in Yaquina estuary, Oregon, USA. Botanica Marina XVI: 113–138.

  • Riznyk, R. 1978. Interstitial diatoms from two tidal flats in Yaquina estuary, Oregon, USA. Botanica Marina XVI: 113–138.

    Google Scholar 

  • Riznyk, R.Z., and H.K. Phinney. 1972. The distribution of intertidal phytopsammon in an Oregon estuary. Mar. Biol. 13 (4): 318–324.

    Article  Google Scholar 

  • Sabbe, K., and W. Vyverman. 1991. Distribution of benthic diatom assemblages in the Westerschelde (Zeeland, the Netherlands). Belg. J. Bot. 124: 91–101.

    Google Scholar 

  • Sabbe, K., and W. Vyverman. 1995. Taxonomy, morphology and ecology of some widespread representatives of the diatom genus Opephora. Eur. J. Phycol. 30 (4): 235–249.

    Article  Google Scholar 

  • Sawai, Y., B.P. Horton, A.C. Kemp, A.D. Hawkes, T. Nagumo, and A.R. Nelson. 2016. Relationships between diatoms and tidal environments in Oregon and Washington, USA. Diatom Res 31 (1): 17–38.

    Article  Google Scholar 

  • Sawai, Y., and T. Nagumo. 2003. Diatoms from Alsea Bay, Oregon, USA. Diatom 19: 33–46.

    Google Scholar 

  • Scranton, R. 2004. The application of geographic information systems for delineation and classification of tidal wetlands for resources management of Oregon’s coastal watersheds. Corvallis: Oregon State University’s Master’s Thesis.

  • Semcheski, M.R., T.A. Egerton, and H.G. Marshall. 2016. Composition and diversity of intertidal microphytobenthos and phytoplankton in Chesapeake Bay. Wetlands 36 (3): 483–496.

    Article  Google Scholar 

  • Sullivan, M. 1999. Applied diatom studies in estuaries and shallow coastal environments. In The diatoms: applications for the environmental and earth sciences, ed. E. Stoermer and J. Smol. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sullivan, M.J., and C.A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: Evidence from multiple stable isotope analyses. Mar. Ecol. Press Ser 62: 149–159.

    Article  Google Scholar 

  • Sundbäck, K. 1987. The epipsammic marine diatom Opephora olsenii Möller. Diatom Res 2 (2): 241–249.

    Article  Google Scholar 

  • Sundbäck, K., and L.K. Medlin. 1986. A light and electron microscopic study of the epipsammic diatom Catenula adhaerens Mereschkowsky. Diatom Res 1 (2): 283–290.

    Article  Google Scholar 

  • Thom, R.M., and R.G. Albright. 1990. Dynamics of benthic vegetation standing-stock, irradiance, and water properties in Central Puget Sound. Mar. Biol. 104 (1): 129–141.

    Article  Google Scholar 

  • Trobajo, R., and M.J. Sullivan. 2010. Applied diatom studies in estuaries and shallow coastal environments. In Diatoms: application for the environmental and earth sciences, ed. E.F. Stoermer and J.P. Smol, 2nd ed., 309–319. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Underwood, G.J.C. 1994. Seasonal and spatial variation in epipelic diatom assemblages in the Severn estuary. Diatom Res 9 (2): 451–472.

    Article  Google Scholar 

  • Underwood, G.J.C., and J.C. Kromkamp. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Adv. Ecol. Res. 29: 93–153.

    Article  CAS  Google Scholar 

  • Underwood, G., J. Phillips, and K. Saunders. 1998. Distribution of estuarine benthic diatom species along salinity and nutrient gradients. Eur. J. Phycol. 32: 173–183.

    Article  Google Scholar 

  • USGS. 2012. National elevation dataset – NAVD88 meters – 1/3rd-arc-second (approx. 10m). https://gisdata.nd.gov/Metadata/ISO/html/metadata_DEM_NED_10m.html#ID0EKNA. Accessed 2012.

  • Valiela, I. 1995. Marine ecological processes. New York: Springer-Verlag.

    Book  Google Scholar 

  • van Dam, H., A. Mertens, and J.A. Sinkeldam. 1994. A coded check list and ecological indicator values of freshwater diatoms from the Netherlands. Aquat. Ecol. 28: 117–133.

    Article  Google Scholar 

  • van Oevelen, D., K. Soetaert, J.J. Middelburg, P.M.J. Herman, L. Moodley, I. Hamels, T. Moens, and C.H.R. Heip. 2006. Carbon flows through a benthic food web: Integrating biomass, isotope and tracer data. J. Mar. Res. 64 (3): 453–482.

    Article  Google Scholar 

  • Vilbaste, S., K. Sundbäck, C. Nilsson, and J. Truu. 2000. Distribution of benthic diatoms in the littoral zone of the Gulf of Riga, the Baltic Sea. Eur. J. Phycol. 35 (4): 373–385.

    Article  Google Scholar 

  • Vos, P.C., and H. de Wolf. 1988. Methodological aspects of paleo-ecological diatom research in coastal areas of the Netherlands. Geol. Mijnb. 67: 31–40.

    Google Scholar 

  • Vos, P.C., and H. de Wolf. 1993. Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands, methodological aspects. Hydrobiologia 269–270: 285–296.

    Article  Google Scholar 

  • Wachnicka, A., E. Gaiser, L. Collins, T. Frankovich, and J. Boyer. 2010. Distribution of diatoms and development of diatom-based models for inferring salinity and nutrient concentrations in Florida bay and adjacent coastal wetlands of South Florida (USA). Estuar. Coasts 33 (5): 1080–1098.

    Article  CAS  Google Scholar 

  • Walker, C.E., and Y. Pan. 2006. Using diatoms to assess urban stream condition. Hydrobiologia 561 (1): 179–189.

    Article  CAS  Google Scholar 

  • Wei, T., V. Simko, M. Levy, Y. Xie, Y. Jan, and J. Zemla. 2017. Package ‘corrplot. https://cran.r-project.org/web/packages/corrplot/corrplot.pdf

  • Weilhoefer, C.L., W.G. Nelson, and P. Clinton. 2015. Tidal channel diatom assemblages reflect within wetland environmental conditions and land use at multiple scales. Estuar. Coasts 38 (2): 534–545.

    Article  CAS  Google Scholar 

  • Wetzel, R.G., and G.E. Likens. 1991. Limnological analysis. New York: Springer-Verlag.

    Book  Google Scholar 

  • Whitfield, A.K., M. Elliott, A. Basset, S.J.M. Blaber, and R.J. West. 2012. Paradigms in estuarine ecology – a review of the Remane diagram with suggested revised models for estuaries. Estuar. Coast. Shelf Sci. 97: 78–90.

    Article  Google Scholar 

  • Whiting, M.C., and C.D. McIntire. 1985. An investigation of distributional patterns in the diatom flora of Netarts Bay, Oregon, by correspondence analysis. J. Phycol. 21: 655–661.

    Article  Google Scholar 

  • Wickham, H. 2009. ggplot2 elegant graphics for data analysis. New York: Springer. https://doi.org/10.1007/978-0-387-98141-3.

    Book  Google Scholar 

  • Worm, B., E.B. Barbier, N. Beaumont, J.E. Duffy, C. Folke, B.S. Halpern, J.B.C. Jackson, H.K. Lotze, F. Micheli, S.R. Palumbi, E. Sala, K.A. Selkoe, J.J. Stachowicz, and R. Watson. 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314 (5800): 787–790.

    Article  CAS  Google Scholar 

  • Yamamoto, M., T. Chiba, and A. Tuji. 2017. Salinity responses of benthic diatoms inhabiting tidal flats. Diatom Res 32 (3): 243–250.

    Article  Google Scholar 

Download references

Funding

This research was funded in part by a grant from the M. J. Murdock Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine L. Weilhoefer.

Additional information

Communicated by Just Cebrian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weilhoefer, C.L., Matteucci, C.N. & Turner, F. Multiple Estuarine Gradients Influencing Tidal Flat Benthic Algal Biomass and Community Structure in the Yaquina Estuary, OR, USA. Estuaries and Coasts 44, 1392–1407 (2021). https://doi.org/10.1007/s12237-020-00854-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-020-00854-6

Keywords

Navigation