Skip to main content

Advertisement

Log in

Development and Characterization of Photocatalytic GaN Coatings by Cold Spray Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

For the first time, the low-pressure cold spray (LPCS) process was used to manufacture gallium nitride (GaN) films to enhance its photocatalytic properties and decrease its manufacturing cost. The deposition behavior of the GaN powder on stainless steel substrates was investigated. Several specimens, with sparsely deposited agglomerated GaN particles, were prepared under different spray conditions. Quantitative analysis of the evolution of the coverage area, deposited particle count, and average sectional area shows that, upon impact, agglomerated GaN particles disintegrate, leading to large deposition of small particles. By analyzing the cross-sectional area of the deposited particle, no discernible permanent deformation of the substrate was observed. In addition, x-ray diffraction analysis of the coatings and powder indicated that no phase transformation occurred during the process. Based on Williamson–Hall analysis, the broader peaks of the coatings were mainly attributed to the distortions in the GaN lattice rather than changes in the crystallite size. At 400°C and 0.6 MPa, the deposition efficiency reached 5.3%, and the photocatalytic activities of the coating were about 33% (+9% compared to the powder). It is attributed to the higher specific surface area and roughness that the coatings exhibit after the breakage of the particles during the cold spray.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Ângelo, L. Andrade, L.M. Madeira, and A. Mendes, An Overview of Photocatalysis Phenomena Applied to NOx Abatement, J. Environ. Manag., 2013, 129, p 522-539. https://doi.org/10.1016/j.jenvman.2013.08.006

    Article  CAS  Google Scholar 

  2. F.L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, Microstructure and Environmental Functionalities of TiO2-Supported Photocatalysts Obtained by Suspension Plasma Spraying, Appl. Catal. B Environ., 2006, 68(1–2), p 74-84. https://doi.org/10.1016/j.apcatb.2006.07.009

    Article  CAS  Google Scholar 

  3. A.A. Ismail and D.W. Bahnemann, Photochemical Splitting of Water for Hydrogen Production by Photocatalysis: A Review, Sol. Energy Mater. Sol. Cells, 2014, 128, p 85-101. https://doi.org/10.1016/j.solmat.2014.04.037

    Article  CAS  Google Scholar 

  4. M. Gardon, C. Fernández-Rodríguez, D. Garzón Sousa, J.M. Doña-Rodríguez, S. Dosta, I.G. Cano, and J.M. Guilemany, Photocatalytic Activity of Nanostructured Anatase Coatings Obtained by Cold Gas Spray, J. Therm. Spray Technol., 2014, 23(7), p 1135-1141. https://doi.org/10.1007/s11666-014-0087-0

    Article  CAS  Google Scholar 

  5. A. Di Mauro, M.E. Fragalà, V. Privitera, and G. Impellizzeri, ZnO for Application in Photocatalysis: From Thin Films to Nanostructures, Mater. Sci. Semicond. Process., 2017, 69, p 44-51. https://doi.org/10.1016/j.mssp.2017.03.029

    Article  CAS  Google Scholar 

  6. J. Fang, H. Fan, Y. Ma, Z. Wang, and Q. Chang, Surface Defects Control for ZnO Nanorods Synthesized by Quenching and Their Anti-Recombination in Photocatalysis, Appl. Surf. Sci., 2015, 332, p 47-54. https://doi.org/10.1016/j.apsusc.2015.01.139

    Article  CAS  Google Scholar 

  7. X. Chen, L. Liu, P.Y. Yu, and S.S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science, 2011, 331(6018), p 746-750. https://doi.org/10.1126/science.1200448

    Article  CAS  Google Scholar 

  8. X. Xi, C. Yang, H. Cao, Z. Yu, J. Li, S. Lin, Z. Ma, and L. Zhao, GaN Nanocolumns Fabricated by Self-Assembly Ni Mask and Its Enhanced Photocatalytic Performance in Water Splitting, Appl. Surf. Sci., 2018, 462, p 310-315. https://doi.org/10.1016/j.apsusc.2018.08.113

    Article  CAS  Google Scholar 

  9. D. Beydoun, R. Amal, G. Low, and S. McEvoy, Role of Nanoparticles in Photocatalysis, J. Nanopart. Res., 1999, 1, p 439-458. https://doi.org/10.1023/A:1010044830871

    Article  CAS  Google Scholar 

  10. A. Sanchez-Martinez, C. Koop-Santa, O. Ceballos-Sanchez, E.R. López-Mena, M.A. González, V. Rangel-Cobián, E. Orozco-Guareño, and M. García-Guaderrama, Study of the Preparation of TiO2 Powder by Different Synthesis Methods, Mater. Res. Express, 2019, 6(8), p 085085. https://doi.org/10.1088/2053-1591/ab21e8

    Article  CAS  Google Scholar 

  11. S. Fan, B. AlOtaibi, S.Y. Woo, Y. Wang, G.A. Botton, and Z. Mi, High Efficiency Solar-to-Hydrogen Conversion on a Monolithically Integrated InGaN/GaN/Si Adaptive Tunnel Junction Photocathode, Nano Lett., 2015, 15(4), p 2721-2726. https://doi.org/10.1021/acs.nanolett.5b00535

    Article  CAS  Google Scholar 

  12. T. Kida, Y. Minami, G. Guan, M. Nagano, M. Akiyama, and A. Yoshida, Photocatalytic Activity of Gallium Nitride for Producing Hydrogen from Water under Light Irradiation, J. Mater. Sci., 2006, 41(11), p 3527-3534. https://doi.org/10.1007/s10853-005-5655-8

    Article  CAS  Google Scholar 

  13. J.L. Yang, S.J. An, W. Il Park, G.-C. Yi, and W. Choi, Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal-Organic Chemical Vapor Deposition, Adv. Mater., 2004, 16(18), p 1661-1664. https://doi.org/10.1002/adma.200306673

    Article  CAS  Google Scholar 

  14. Y. Xie and C. Yuan, Transparent TiO2 Sol Nanocrystallites Mediated Homogeneous-like Photocatalytic Reaction and Hydrosol Recycling Process, J. Mater. Sci., 2005, 40(24), p 6375-6383. https://doi.org/10.1007/s10853-005-1825-y

    Article  CAS  Google Scholar 

  15. H.S. Jung, Y.J. Hong, Y. Li, J. Cho, Y.J. Kim, and G.C. Yi, Photocatalysis Using GaN Nanowires, ACS Nano, 2008, 2(4), p 637-642. https://doi.org/10.1021/nn700320y

    Article  CAS  Google Scholar 

  16. G.J. Yang, C.J. Li, F. Han, W.Y. Li, and A. Ohmori, Low Temperature Deposition and Characterization of TiO2 Photocatalytic Film through Cold Spray, Appl. Surf. Sci., 2008, 254(3), p 3979-3982. https://doi.org/10.1016/j.apsusc.2007.12.016

    Article  CAS  Google Scholar 

  17. A.E. Wickenden, D.D. Koleske, R.L. Henry, M.E. Twigg, and M. Fatemi, Resistivity Control in Unintentionally Doped GaN Films Grown by MOCVD, J. Cryst. Growth, 2004, 260(1–2), p 54-62. https://doi.org/10.1016/j.jcrysgro.2003.08.024

    Article  CAS  Google Scholar 

  18. T.D. Moustakas, E. Iliopoulos, A.V. Sampath, H.M. Ng, D. Doppalapudi, M. Misra, D. Korakakis, and R. Singh, Growth and Device Applications of III-Nitrides by MBE, J. Cryst. Growth, 2001, 227–228, p 13-20. https://doi.org/10.1016/S0022-0248(01)00625-X

    Article  Google Scholar 

  19. H. Geng, H. Sunakawa, N. Sumi, K. Yamamoto, A. Atsushi Yamaguchi, and A. Usui, Growth and Strain Characterization of High Quality GaN Crystal by HVPE, J. Cryst. Growth, 2012, 350(1), p 44-49. https://doi.org/10.1016/j.jcrysgro.2011.12.020

    Article  CAS  Google Scholar 

  20. M. Bideau, B. Claudel, C. Dubien, L. Faure, and H. Kazouan, On the ‘Immobilization’ of Titanium Dioxide in the Photocatalytic Oxidation of Spent Waters, Appl. Surf. Sci., 2008, 254(3), p 3979-3982. https://doi.org/10.1016/j.apsusc.2007.12.016

    Article  CAS  Google Scholar 

  21. N.J. Peill and M.R. Hoffmann, Development and Optimization of a TiO2-Coated Fiber-Optic Cable Reactor: Photocatalytic Degradation of 4-Chlorophenol, Environ. Sci. Technol., 1995, 29(12), p 2974-2981. https://doi.org/10.1021/es00012a013

    Article  CAS  Google Scholar 

  22. H. Hajipour, A. Abdollah-zadeh, H. Assadi, E. Taheri-Nassaj, and H. Jahed, Effect of Feedstock Powder Morphology on Cold-Sprayed Titanium Dioxide Coatings, J. Therm. Spray Technol., 2018, 27(8), p 1542-1550. https://doi.org/10.1007/s11666-018-0782-3

    Article  CAS  Google Scholar 

  23. K. Ravi, Y. Ichikawa, T. Deplancke, K. Ogawa, O. Lame, and J.Y. Cavaille, Development of Ultra-High Molecular Weight Polyethylene (UHMWPE) Coating by Cold Spray Technique, J. Therm. Spray Technol., 2015, 24(6), p 1015-1025.

    Article  CAS  Google Scholar 

  24. X. Chu, H. Che, P. Vo, R. Chakrabarty, B. Sun, J. Song, and S. Yue, Understanding the Cold Spray Deposition Efficiencies of 316L/Fe Mixed Powders by Performing Splat Tests onto as-Polished Coatings, Surf. Coat. Technol., 2017, 324, p 353-360. https://doi.org/10.1016/j.surfcoat.2017.05.083

    Article  CAS  Google Scholar 

  25. H.Y. Lee, S.H. Jung, S.Y. Lee, Y.H. You, and K.H. Ko, Correlation between Al2O3 Particles and Interface of Al-Al2O3 Coatings by Cold Spray, Appl. Surf. Sci., 2005, 252(5), p 1891-1898.

    Article  CAS  Google Scholar 

  26. K. Ravi, W.L. Sulen, C. Bernard, Y. Ichikawa, and K. Ogawa, Fabrication of Micro-/Nano-Structured Super-Hydrophobic Fluorinated Polymer Coatings by Cold-Spray, Surf. Coat. Technol., 2019, 373, p 17-24. https://doi.org/10.1016/j.surfcoat.2019.05.078

    Article  CAS  Google Scholar 

  27. H.X. Hu, S.L. Jiang, Y.S. Tao, T.Y. Xiong,, and Y.G. Zheng, Cavitation Erosion and Jet Impingement Erosion Mechanism of Cold Sprayed Ni-Al2O3 Coating, Nucl. Eng. Des., 2011, 241(12), p 4929-4937.

    Article  CAS  Google Scholar 

  28. T.H. Van Steenkiste, J.R. Smith, and R.E. Teets, Aluminum Coatings via Kinetic Spray with Relatively Large Powder Particles, Surf. Coat. Technol., 2002, 154(2–3), p 237-252. https://doi.org/10.1016/S0257-8972(02)00018-X

    Article  Google Scholar 

  29. D. Hanft, J. Exner, M. Schubert, T. Stöcker, P. Fuierer, and R. Moos, An Overview of the Aerosol Deposition Method: Process Fundamentals and New Trends in Materials Applications, J. Ceram. Sci. Technol., 2015, 6(3), p 147-181. https://doi.org/10.4416/JCST2015-00018

    Article  Google Scholar 

  30. W. Lock Sulen, K. Ravi, C. Bernard, Y. Ichikawa, and K. Ogawa, Deposition Mechanism Analysis of Cold-Sprayed Fluoropolymer Coatings and Its Wettability Evaluation, J. Therm. Spray Technol., 2020, 1, p 21. https://doi.org/10.1007/s11666-020-01059-w

    Article  CAS  Google Scholar 

  31. Y. Ichikawa and K. Ogawa, Effect of Substrate Surface Oxide Film Thickness on Deposition Behavior and Deposition Efficiency in the Cold Spray Process, J. Therm. Spray Technol., 2015, 24(7), p 1269-1276. https://doi.org/10.1007/s11666-015-0299-y

    Article  Google Scholar 

  32. N.I. Omar, S. Selvami, M. Kaisho, M. Yamada, T. Yasui, and M. Fukumoto, Deposition of Titanium Dioxide Coating by the Cold-Spray Process on Annealed Stainless Steel Substrate, Coatings, 2020, 10(10), p 1-13.

    Article  Google Scholar 

  33. J. Wang, Y. Asakura, and S. Yin, Preparation of (Zn1+XGe)(N2Ox) Nanoparticles with Enhanced NOx Decomposition Activity under Visible Light Irradiation by Nitridation of Zn2GeO4 Nanoparticles Designed Precisely, Nanoscale, 2019, 11(42), p 20151-20160. https://doi.org/10.1039/C9NR05244E

    Article  CAS  Google Scholar 

  34. S. Yin, Q. Zhang, F. Saito, and T. Sato, Preparation of Visible Light-Activated Titania Photocatalyst by Mechanochemical Method, Chem. Lett., 2003, 32(4), p 358-359. https://doi.org/10.1246/cl.2003.358

    Article  CAS  Google Scholar 

  35. R. Ghelichi, S. Bagherifard, D. MacDonald, I. Fernandez-Pariente, B. Jodoin, and M. Guagliano, Experimental and Numerical Study of Residual Stress Evolution in Cold Spray Coating, Appl. Surf. Sci., 2014, 288, p 26-33. https://doi.org/10.1016/j.apsusc.2013.09.074

    Article  CAS  Google Scholar 

  36. S.I. Imbriglio, M. Hassani-Gangaraj, D. Veysset, M. Aghasibeig, R. Gauvin, K.A. Nelson, C.A. Schuh, and R.R. Chromik, Adhesion Strength of Titanium Particles to Alumina Substrates: A Combined Cold Spray and LIPIT Study, Surf. Coat. Technol., 2019, 361, p 403-412.

    Article  CAS  Google Scholar 

  37. A. Banerjee, D. Bernoulli, H. Zhang, M.F. Yuen, J. Liu, J. Dong, F. Ding, J. Lu, M. Dao, W. Zhang, Y. Lu, and S. Suresh (2018) Ultralarge Elastic Deformation of Nanoscale Diamond, Science (80-). Am. Assoc. Adv. Sci. 360(6386), p 300-302.

  38. H. Zhang, J. Tersoff, S. Xu, H. Chen, Q. Zhang, K. Zhang, Y. Yang, C.S. Lee, K.N. Tu, J. Li, and Y. Lu, Approaching the Ideal Elastic Strain Limit in Silicon Nanowires, Sci. Adv., 2016, 2(8), p e1501382.

    Article  Google Scholar 

  39. A. Nie, Y. Bu, J. Huang, Y. Shao, Y. Zhang, W. Hu, J. Liu, Y. Wang, B. Xu, Z. Liu, H. Wang, W. Yang, and Y. Tian, Direct Observation of Room-Temperature Dislocation Plasticity in Diamond, Matter, 2020, 2(5), p 1222-1232.

    Article  Google Scholar 

  40. S. Fan, X. Li, R. Fan, and Y. Lu, Size-Dependent Fracture Behavior of GaN Pillars under Room Temperature Compression, Nanoscale R. Soc. Chem., 2020, 12(45), p 23241-23247.

    Article  CAS  Google Scholar 

  41. M.T. Puth, M. Neuhäuser, and G.D. Ruxton, Effective Use of Pearson’s Product-Moment Correlation Coefficient, Anim. Behav., 2014, 93, p 183-189. https://doi.org/10.1016/j.anbehav.2014.05.003

    Article  Google Scholar 

  42. P.C. King, S.H. Zahiri, and M. Jahedi, Focused Ion Beam Micro-Dissection of Cold-Sprayed Particles, Acta Mater., 2008, 56(19), p 5617-5626. https://doi.org/10.1016/j.actamat.2008.07.034

    Article  CAS  Google Scholar 

  43. M. Zhang, Y. Liu, M. Yang, W. Zhang, J. Zhou, Z. Zhang, E. Xie, X. Pan, and S. Li, High Performance Self-Powered Ultraviolet Photodetectors Based on Electrospun Gallium Nitride Nanowires, Appl. Surf. Sci., 2018, 452, p 43-48. https://doi.org/10.1016/j.apsusc.2018.04.225

    Article  CAS  Google Scholar 

  44. D. Nath, F. Singh and R. Das, X-ray Diffraction Analysis by Williamson–Hall, Halder–Wagner and Size-Strain Plot Methods of CdSe Nanoparticles—A Comparative Study, Mater. Chem. Phys., 2020, 239, p 122021. https://doi.org/10.1016/j.matchemphys.2019.122021

    Article  CAS  Google Scholar 

  45. A.W. Burton, K. Ong, T. Rea, and I.Y. Chan, On the Estimation of Average Crystallite Size of Zeolites from the Scherrer Equation: A Critical Evaluation of Its Application to Zeolites with One-Dimensional Pore Systems, Microporous Mesoporous Mater., 2009, 117(1–2), p 75-90. https://doi.org/10.1016/j.micromeso.2008.06.010

    Article  CAS  Google Scholar 

  46. V. Mote, Y. Purushotham, and B. Dole, Williamson-Hall Analysis in Estimation of Lattice Strain in Nanometer-Sized ZnO Particles, J. Theor. Appl. Phys., 2012, 6(1), p 6-14. https://doi.org/10.1186/2251-7235-6-6

    Article  Google Scholar 

  47. G.K. Williamson, and W.H. Hall, X-ray Broadening from Filed Aluminium and Wolfram, Acta Metall., 1953, 1(1), p 22-31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  48. P.M. Kibasomba, S. Dhlamini, M. Maaza, C.P. Liu, M.M. Rashad, D.A. Rayan, and B.W. Mwakikunga, Strain and Grain Size of TiO2 Nanoparticles from TEM, Raman Spectroscopy and XRD: The Revisiting of the Williamson-Hall Plot Method, Results Phys., 2018, 9, p 628-635.

    Article  Google Scholar 

  49. M. Yamada, H. Isago, H. Nakano, and M. Fukumoto, Cold Spraying of TiO2 Photocatalyst Coating with Nitrogen Process Gas, J. Therm. Spray Technol., 2010, 19(6), p 1218-1223. https://doi.org/10.1007/s11666-010-9520-1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partly supported by the JSPS KAKENHI Grant-in-Aid for Scientific Research (A) 17H01235.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoyun Zhou or Chrystelle A. Bernard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, S., Bernard, C.A., Ravi, K. et al. Development and Characterization of Photocatalytic GaN Coatings by Cold Spray Process. J Therm Spray Tech 30, 1294–1309 (2021). https://doi.org/10.1007/s11666-021-01207-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01207-w

Keywords

Navigation