Skip to main content
Log in

Contribution of Cover Crop Residue Decomposition to Peach Tree Nitrogen Nutrition

  • Original Paper
  • Published:
Journal of Soil Science and Plant Nutrition Aims and scope Submit manuscript

Abstract

Cover crop nitrogen (N) cycling has an important role in agricultural production and contributes to peach [Prunus persica (L.) Batsch] N nutrition. This study evaluated black oat (Avena strigosa Schreb) and ryegrass (Lolium multiflorum L.) residue decomposition dynamics, N recovery from cover crop residues, and N compartmentalization in peach tree organs. A 2-year field trial was developed with labeled (3.6–4.0 atom% 15N excess) cover crop shoot biomass application in a 5-year-old peach orchard. The region’s climate is warm temperate (Cfb), and the soil is classified as a Typic Hapludalf. Litter bags with unlabeled shoot residues were also deposited in the orchard to assess biomass, carbon (C), N, lignin, cellulose, and non-structural biomass decomposition dynamics. After 13 months, the leaves, trunk, and roots showed the greatest proportion of N derived from residues (Ndfr) (35.4, 25.1, and 22.4%, respectively) while the greatest concentrations of 15N and Ndfr occurred in roots <2 mm (0.0376 and 0.94%, respectively). The N derived from cover crop shoots in the second production cycle was similar among tree organs. Ryegrass residues presented the highest decomposition constant (k) values for dry matter, total organic carbon (TOC), cellulose, and lignin. Hence, black oat residues presented a higher half-life (t½) for dry matter, TOC, total N, cellulose, and lignin. The N derived from black oat and ryegrass residues in mature trees was expressively low (<1%) and similar between species. Within organs, the highest Ndfr occurred in peach leaves during the flowering stage, when the greatest residue decomposition rate also occurred. Soil N and plant internal N reserves are the major N sources for newly formed organs, but greater contributions to tree N nutrition may occur with long-term cover crop residue deposition and different plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aber JD, Martin M (1999) Leaf chemistry, 1992-1993 (ACCP). [leaf chemistry, 1992-1993 (accelerated canopy chemistry program)]

  • Amossé C, Jeuffroy MH, Mary B, David C (2014) Contribution of relay intercropping with legume cover crops on nitrogen dynamics in organic grain systems. Nutr Cycl Agroecosyst 98:1–14. https://doi.org/10.1007/s10705-013-9591-8

    Article  Google Scholar 

  • Bonanomi G, Incerti G, Giannino F, Mingo A, Lanzotti V, Mazzoleni S (2013) Litter quality assessed by solid state13C NMR spectroscopy predicts decay rate better than C/N and lignin/N ratios. Soil Biol Biochem 56:40–48. https://doi.org/10.1016/j.soilbio.2012.03.003

    Article  CAS  Google Scholar 

  • Bravo K, Moreno T, Baldi E, Marcolini G, Sorrenti G, Quartieri M, Marangoni B (2012) Effect of organic fertilization on carbon assimilation and partitioning in bearing nectarine trees. Sci Hortic 137:100–106. https://doi.org/10.1016/j.scienta.2012.01.030

    Article  Google Scholar 

  • Brunetto G, Ventura M, Scandellari F, Ceretta CA, Kaminski J, Melo GWB, Tagliavini M (2011) Nutrients release during the decomposition of mowed perennial ryegrass and white clover and its contribution to nitrogen nutrition of grapevine. Nutr Cycl Agroecosyst 90:299–308. https://doi.org/10.1007/s10705-011-9430-8

    Article  CAS  Google Scholar 

  • Brunetto G, Ceretta CA, Melo GWB, Kaminski J, Trentin G, Girotto E, Ferreira PAA, Miotto A, Trivelin PCO (2014) Contribution of nitrogen from agricultural residues of rye to ‘Niagara Rosada’ grape nutrition. Sci Hortic 169:66–70. https://doi.org/10.1016/j.scienta.2014.02.019

    Article  CAS  Google Scholar 

  • Brunetto G, Lorensini F, Ceretta CA, Ferreira PAA, Couto RR, De Conti L, Ciotta MN, Kulmann M, Schneider RO, Somavilla LM, Tiecher TL, Giacomini S, Melo GWB, Carranca CLVA (2017) Contribution of mineral N to young grapevine in the presence or absence of cover crops. J Soil Sci Plant Nutr 17(3):570–580. https://doi.org/10.4067/S0718-95162017000300002

    Article  CAS  Google Scholar 

  • Cabrera ML, Kissel DE, Vigil MF (2005) Nitrogen mineralization from organic residues: research opportunities. J Environ Qual 34:75–79. https://doi.org/10.2134/jeq2005.0075

    Article  CAS  PubMed  Google Scholar 

  • Carranca C, Rocha I, Varennes A, Oliveira A, Pampulha ME, Torres MO (2009) Effect of tillage and temperature on nitrogen mineralization and microbial activity and microbial numbers of lupine amended soil. Agrochimica 53(3):183–195

    Google Scholar 

  • Carranca C, Brunetto G, Tagliavini M (2018) Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants 7(4):1–12. https://doi.org/10.3390/plants7010004

    Article  CAS  Google Scholar 

  • Casaroli D, Jong van Lier Q (2008) Critérios para determinação da capacidade de vaso. [Criteria for pot capacity determination]. Rev Bras Ciênc Solo 32(1):59–66. Portuguese. https://doi.org/10.1590/S0100-06832008000100007

    Article  Google Scholar 

  • Chen Q, Niu B, Hu Y, Luo T, Zhang G (2020) Warming and increased precipitation indirectly affect the composition and turnover of labile-fraction soil organic matter by directly affecting vegetation and microorganisms. Sci Total Environ 714(136787):1–9. https://doi.org/10.1016/j.scitotenv.2020.136787

    Article  CAS  Google Scholar 

  • Comissão de Química e Fertilidade do Solo - CQFS-RS/SC (2004) Manual de calagem e adubação para os Estados de Rio Grande do Sul e de Santa Catarina. [Liming and fertilization manual for the states of Rio Grande do Sul and Santa Catarina]. Porto Alegre, Sociedade Brasileira de Ciência do Solo. 400p. Portuguese

  • Ferreira PAA, Girotto E, Trentin G, Miotto A, Melo GWB, Ceretta CA, Kaminski J, Del Frari BK, Marchezan C, Silva LOS, Faversani JC, Brunetto G (2014) Biomass decomposition and nutrient release from black oat and hairy vetch residues deposited in a vineyard. Rev Bras Cienc Solo 38:1621–1632. https://doi.org/10.1590/S0100-06832014000500027

    Article  Google Scholar 

  • Lorensini F, Ceretta CA, Girotto E, Cerini JB, Lourenzi CR, De Conti L, Trindade MM, Melo GWB, Brunetto G (2012) Lixiviação e volatilização de nitrogênio em um Argissolo cultivado com Videira submetida à adubação nitrogenada. [lixiviation and volatilization of nitrogen in Sandy Typic Hapludalf soil cultivated with grapevine submitted to the nitrogen fertilization]. Cienc rural 42:1173-1179. Portuguese. https://doi.org/10.1590/S0103-84782012005000038

  • Mariotti A (1983) Atmospheric nitrogen is a reliable standard for natural 15N abundance measurements. Nature 303:685–687. https://doi.org/10.1038/303685a0

    Article  CAS  Google Scholar 

  • Martínez JRF, Zuazo VHD, Raya AM (2006) Environmental impact from mountainous olive orchards under different soil-management systems (SE Spain). Sci Total Environ 358:46–60. https://doi.org/10.1016/j.scitotenv.2005.05.036

    Article  CAS  Google Scholar 

  • Mayer NA, Bianchi VJ, Castro LAS (2014) Porta-enxertos. [Rootstocks]. In: Raseira MCB, Pereira JFM, Carvalho FLC (eds) Pessegueiro [Peach tree]. Brasília: Embrapa; p. 173–223 Portuguese

    Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nario A, Pino I, Zapata F, Albornoz MP, Baherl P (2003) Nitrogen (15N) fertiliser use efficiency in peach (Prunus persica L.) cv. Goldencrest trees in Chile. Sci Hortic 97:279–287. https://doi.org/10.1016/S0304-4238(02)00211-X

    Article  Google Scholar 

  • Neto C, Carranca C, Clemente J, De Varennes A (2008) Nitrogen distribution, remobilization and re-cycling in young orchard of non-bearing ‘Rocha’ pear trees. Sci Hortic 118:299–307. https://doi.org/10.1016/j.scienta.2008.06.023

    Article  CAS  Google Scholar 

  • Nguyen TT, Marschner P (2017) Soil respiration, microbial biomass and nutrient availability in soil after addition of residues with adjusted N and P concentrations. Pedosphere 27:76–85. https://doi.org/10.1016/S1002-0160(17)60297-2

    Article  CAS  Google Scholar 

  • Oliveira BS, Ambrosini VG, Trapp T, Santos MA, Sete PB, Lovato PE, Loss A, Comin JJ, Lourenzi CR, Rosa RC, Toselli M, Brunetto G (2016a) Nutrition, productivity and soil chemical properties in an apple orchard under weed management. Nutr Cycl Agroecosyst 104:247–258. https://doi.org/10.1007/s10705-016-9769-y

    Article  CAS  Google Scholar 

  • Oliveira RA, Brunetto G, Loss A, Gatiboni LC, Kürtz C, Müller Júnior V, Lovato PE, Oliveira BS, Souza M, Comin JJ (2016b) Cover crops effects on soil chemical properties and onion yield. Rev Bras Cienc Solo 40:e0150099. https://doi.org/10.1590/18069657rbcs20150099

    Article  CAS  Google Scholar 

  • Ovalle C, del Pozo A, Peoples MB, Lavín A (2010) Estimating the contribution of nitrogen from legume cover crops to the nitrogen nutrition of grapevines using a 15N dilution technique. Plant Soil 334:247–259. https://doi.org/10.1007/s11104-010-0379-1

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1996) Dynamics of residue decomposition and soil organic matter turnover. In: Paul EA, Clark FE (eds) Soil microbiology and biochemistry, 2nd edn. Academic, San Diego, pp 158–179

    Google Scholar 

  • Policarpo M, Di Marco L, Caruso T, Gioacchini P, Tagliavini M (2002) Dynamics of nitrogen uptake and partitioning in early and late fruit ripening peach (Prununs persica) tree genotypes under a Mediterranean climate. Plant Soil 239:207–214. https://doi.org/10.1023/A:1015074106848

    Article  CAS  Google Scholar 

  • Raseira MCB, Nakasu BH, Barbosa W (2014) Cultivares: descrição e recomendação. [Cultivars: description and recommendation] In: Raseira MCB, Pereira JFM, Carvalho FLC, editors. Pessegueiro [Peach tree]. Brasília: Embrapa; p. 73-141. Portuguese

  • Reichert JM, Rodrigues MF, Bervald CM, Brunetto G, Kato OR, Schumacher MV (2015) Fragmentation, fiber separation, decomposition, and nutrient release of secondary-forest biomass, mechanically chopped-and-mulched, and cassava production in the Amazon. Agric Ecosyst Environ 204:8–16. https://doi.org/10.1016/j.agee.2015.02.005

    Article  Google Scholar 

  • Roberts TL, Norman RJ, Slaton NA, Wilson CE Jr, Ross WJ, Bushong JT (2009) Direct steam distillation as an alternative to the Illinois soil nitrogen test. Soil Sci Soc Am J 73:1268–1275. https://doi.org/10.2136/sssaj2008.0165

    Article  CAS  Google Scholar 

  • Roccuzzo G, Scandellari F, Allegra M, Torrisi B, Stagno F, Mimmo T, Zanotelli D, Gioacchini P, Millard P, Tagliavini M (2017) Seasonal dynamics of root uptake and spring remobilisation of nitrogen in field grown orange trees. Sci Hortic 226:223–230. https://doi.org/10.1016/j.scienta.2017.08.010

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2014) Keys to soil taxonomy, 12th edn. Washington, DC, USDA-Natural Resources Conservation Service

    Google Scholar 

  • Tagliavini M (2012) Nutrient fluxes in orchard ecosystems. In: 3rd Slovenian Fruit Congress with international participation, Krško, 21-23. November 2012 / [organizers] Professional Fruit Society of Slovenia [in] University of Ljubljana, Biotechnical Faculty, Department of Agronomy, Department of Fruit Growing, Viticulture and horticulture; [editor of the collection Metka Hudina]. - Ljubljana: Professional Fruit Society of Slovenia, 2012

  • Tagliavini M, Scandellari F (2013) Methodologies and concepts in the study of nutrient uptake requirements and partitioning in fruit trees. Acta Hortic 984:47–56. https://doi.org/10.17660/ActaHortic.2013.984.3

    Article  Google Scholar 

  • Tagliavini M, Tonon G, Scandellari F, Quinônes A, Palmieri S, Menarbin G, Gioacchini P, Masia M (2007) Nutrient recycling during the decomposition of apple leaves (Malus domestica) and mowed grasses in orchard. Agric Ecosyst Environ 118:191–200. https://doi.org/10.1016/j.agee.2006.05.018

    Article  CAS  Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. [analysis of soil, plants and other materials]. Porto Alegre: Departamento de solos/UFRGS. Portuguese

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Wieder RK, Lang GE (1982) A critique of the analytical methods used examining de-composition data obtained from litter bags. Ecology 63(6):1642–1663. https://doi.org/10.2307/1940104

    Article  Google Scholar 

  • Yeomans JC, Bremmer JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19:1467–1476. https://doi.org/10.1080/00103628809368027

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge all students and staff for their contributions to the development of this research. Thanks to Alden D. Smartt for the assistance in the English revision.

Funding

This study was financed (grant and scholarships) in part by the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Embrapa Clima Temperado - Pelotas, and Embrapa Uva e Vinho.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerson Laerson Drescher.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tassinari, A., da Silva, L.O.S., Drescher, G.L. et al. Contribution of Cover Crop Residue Decomposition to Peach Tree Nitrogen Nutrition. J Soil Sci Plant Nutr 21, 2124–2136 (2021). https://doi.org/10.1007/s42729-021-00508-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42729-021-00508-x

Keywords

Navigation