Skip to main content

Advertisement

Log in

Static and Dynamic Analysis of a Piezoelectric Semiconductor Cantilever Under Consideration of Flexoelectricity and Strain Gradient Elasticity

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this work, the static and dynamic response of a piezoelectric semiconductor cantilever under the transverse end force with consideration of flexoelectricity and strain gradient elasticity is systematically investigated. The one-dimensional governing equations and the corresponding boundary conditions are derived based on Hamilton’s principle. After that, combining with the linearized equations for the conservation of charge, the effects of characteristic length and flexoelectric coefficient on the working performance of a ZnO nanowire are demonstrated as a numerical case, including the static mechanical and electric fields, natural frequencies, and the frequency–response characteristics at resonances. The results indicate that the flexoelectric effect has a great influence on the electric properties of the nanowire, while the strain gradient effect directly contributes to its mechanical properties. To some extent, the increase in characteristic length is equivalent to the stiffness strengthening. The qualitative results and quantitative data are beneficial for revealing the underlying physical mechanism and provide guidance for the design of piezoelectric semiconductor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang ZL. Piezopotential gated nanowire devices: piezotronics and piezo-phototronics. Nano Today. 2010;5(5):540–52.

    Article  Google Scholar 

  2. Kumar B, Kim SW. Recent advances in power generation through piezoelectric nanogenerators. J Mater Chem. 2011;21(47):18946.

    Article  Google Scholar 

  3. Romano G, Mantini G, Carlo AD, D’Amico A, Falconi C, Wang ZL. Piezoelectric potential in vertically aligned nanowires for high output nanogenerators. Nanotechnology. 2011;22(46):465401.

    Article  Google Scholar 

  4. Johar MA, Hassan MA, Waseem A, Ha JS, Lee JK, Ryu SW. Stable and high piezoelectric output of GaN nanowire-based lead-free piezoelectric nanogenerator by suppression of internal screening. Nanomaterials. 2018;8(5):437.

    Article  Google Scholar 

  5. Buyukkose S, Hernandez-Minguez A, Vratzov B, Somaschini C, Geelhaar L, Riechert H, Van der Wiel WG, Santos PV. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology. 2014;25(12):135204.

    Article  Google Scholar 

  6. Zhang J, Zhou JL. Humidity-dependent piezopotential properties of zinc oxide nanowires: insights from atomic-scale modelling. Nano Energy. 2018;50:298–307.

    Article  Google Scholar 

  7. Hutson AR, White DL. Elastic wave propagation in piezoelectric semiconductors. J Appl Phys. 1962;33(1):40–7.

    Article  Google Scholar 

  8. Auld BA. Acoustic fields and waves in solids. New York: Wiley; 1973.

    Google Scholar 

  9. Pierret BRF. Semiconductor fundamentals. New York: Addison-Wesley; 1989.

    Google Scholar 

  10. Araneo R, Falconi C. Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion. Nanotechnology. 2013;24(24):265707.

    Article  Google Scholar 

  11. Fan SQ, Liang YX, Xie JM, Hu YT. Exact solutions to the electromechanical quantities inside a statically-bent circular ZnO nanowire by taking into account both the piezoelectric property and the semiconducting performance: part I. Linearized analysis. Nano Energy. 2017;40:82–7.

    Article  Google Scholar 

  12. Fang K, Qian ZH, Yang JS. Piezopotential in a composite cantilever of piezoelectric dielectrics and nonpiezoelectric semiconductors produced by shear force through e\(_{\rm 15}\). Mater Res Express. 2019;6(10):115917.

    Article  Google Scholar 

  13. Dai XY, Zhu F, Qian ZH, Yang JS. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy. 2018;43:22–8.

    Article  Google Scholar 

  14. Cheng RR, Zhang CL, Chen WQ, Yang JS. Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. J Appl Phys. 2018;124(5):064506.

    Article  Google Scholar 

  15. Wang GL, Liu JX, Liu XL, Feng WJ, Yang JS. Extensional vibration characteristics and screening of polarization charges in a ZnO piezoelectric semiconductor nanofiber. J Appl Phys. 2018;124(8):094502.

    Article  Google Scholar 

  16. Guo Y, Zhang C, Chen W, Yang J. Interaction between torsional deformation and mobile charges in a composite rod of piezoelectric dielectrics and nonpiezoelectric semiconductors. Mech Adv Mater Struct. 2020;6:1–7.

    Google Scholar 

  17. Liang C, Zhang C, Chen W, Yang J. Electrical response of a multiferroic composite semiconductor fiber under a local magnetic field. Acta Mech Solida Sin. 2020;33(4):663–73.

    Article  Google Scholar 

  18. Cheng RR, Zhang CL, Chen WQ, Yang JS. Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change. Nano Energy. 2019;66:104081.

    Article  Google Scholar 

  19. Fleck NA, Muller GM, Ashby MF, Hutchinson JW. Strain gradient plasticity: theory and experiment. Acta Metal Mater. 1994;42(2):475–87.

    Article  Google Scholar 

  20. Aifantis EC. On the role of gradients in the localization of deformation and fracture. Int J Eng Sci. 1992;30(9):1279–99.

    Article  Google Scholar 

  21. Spanier JE, Kolpak AM, Urban JJ, Grinberg I, Lian OY, Yun WS, Rappe AM, Park H. Ferroelectric phase transition in individual single-crystalline BaTiO\(_{3}\) nanowires. Nano Lett. 2006;6(3):735–9.

    Article  Google Scholar 

  22. Shen SP, Hu SL. A theory of flexoelectricity with surface effect for elastic dielectrics. J Mech Phys Solids. 2010;58(4):665–77.

    Article  MathSciNet  Google Scholar 

  23. Liang X, Hu SL, Shen SP. Effects of surface and flexoelectricity on a piezoelectric nanobeam. Smart Mater Struct. 2014;23(2):035020.

    Article  Google Scholar 

  24. Yan Z, Jiang LY. Flexoelectric effect on the electroelastic responses of bending piezoelectric nanobeams. J Appl Phys. 2013;113(17):014110.

    Google Scholar 

  25. Xu Y, Hu SL, Shen SP. Electrostatic potential in a bent flexoelectric semiconductive nanowire. Comput Model Eng Sci. 2013;91(4):397–408.

    Google Scholar 

  26. Wang KF, Wang BL. Electrostatic potential in a bent piezoelectric nanowire with consideration of size-dependent piezoelectricity and semiconducting characterization. Nanotechnology. 2018;29(23):255405.

    Article  Google Scholar 

  27. Zhao MH, Liu X, Fan CY, Lu C, Wang BB. Theoretical analysis on the extension of a piezoelectric semi-conductor nanowire: effects of flexoelectricity and strain gradient. J Appl Phys. 2020;127(7):085707.

    Article  Google Scholar 

  28. Ancona MG, Tiersten HF. Fully macroscopic description of bounded semiconductors with an application to the Si-SiO\(_{{2}}\) interface. Phys Rev B. 1980;22(11):6104–19.

    Article  Google Scholar 

  29. Hu SL, Shen SP. Electric field gradient theory with surface effect for nano-dielectrics. Comput Mater Contin. 2009;13(1):63–87.

    Google Scholar 

  30. Luo YX, Cheng RR, Zhang CL, Chen WQ, Yang JS. Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mech Solida Sin. 2018;31(2):127–40.

    Article  Google Scholar 

  31. Mindlin RD. Low frequency vibrations of elastic bars. Int J Solids Struct. 1976;12(1):27–49.

    Article  Google Scholar 

  32. Liang X, Hu SL, Shen SP. Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart Mater Struct. 2017;26(2):035050.

    Article  Google Scholar 

  33. Lazar M, Maugin GA, Aifantis EC. Dislocations in second strain gradient elasticity. Int J Solids Struct. 2006;43(5):1787–817.

    Article  Google Scholar 

  34. Yang WJ, Deng Q, Liang X, Shen SP. Lamb wave propagation with flexoelectricity and strain gradient elasticity considered. Smart Mater Struct. 2018;27(7):085003.

    Article  Google Scholar 

  35. Gao Y, Wang ZL. Electrostatic potential in a bent piezoelectric nanowire. The fundamental theory of nanogenerator and nanopiezotronics. Nano Lett. 2007;7(7):2499–505.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12061131013 and 11972276), the State Key Laboratory of Mechanics and Control of Mechanical Structures at NUAA (No. MCMS-E-0520K02), the Fundamental Research Funds for the Central Universities (NE2020002 and NS2019007), the start-up fund supported by NUAA, and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghua Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, K., Li, P. & Qian, Z. Static and Dynamic Analysis of a Piezoelectric Semiconductor Cantilever Under Consideration of Flexoelectricity and Strain Gradient Elasticity. Acta Mech. Solida Sin. 34, 673–686 (2021). https://doi.org/10.1007/s10338-021-00236-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00236-w

Keywords

Navigation