Elsevier

Engineering

Volume 7, Issue 7, July 2021, Pages 948-957
Engineering

Research Public Health—Article
A Scenario-Based Evaluation of COVID-19-Related Essential Clinical Resource Demands in China

https://doi.org/10.1016/j.eng.2021.03.020Get rights and content
Under a Creative Commons license
open access

Abstract

The coronavirus disease 2019 (COVID-19) pandemic is a global crisis, and medical systems in many countries are overwhelmed with supply shortages and increasing demands to treat patients due to the surge in cases and severe illnesses. This study aimed to assess COVID-19-related essential clinical resource demands in China, based on different scenarios involving COVID-19 spreads and interventions. We used a susceptible–exposed–infectious–hospitalized/isolated–removed (SEIHR) transmission dynamics model to estimate the number of COVID-19 infections and hospitalizations with corresponding essential healthcare resources needed. We found that, under strict non-pharmaceutical interventions (NPIs) or mass vaccination of the population, China would be able to contain community transmission and local outbreaks rapidly. However, under scenarios involving a low intensity of implemented NPIs and a small proportion of the population vaccinated, the use of a peacetime–wartime transition model would be needed for medical source stockpiles and preparations to ensure a normal functioning healthcare system. The implementation of COVID-19 vaccines and NPIs in different periods can influence the transmission of COVID-19 and subsequently affect the demand for clinical diagnosis and treatment. An increased proportion of asymptomatic infections in simulations will not reduce the demand for medical resources; however, attention must be paid to the increasing difficulty in containing COVID-19 transmission due to asymptomatic cases. This study provides evidence for emergency preparations and the adjustment of prevention and control strategies during the COVID-19 pandemic. It also provides guidance for essential healthcare investment and resource allocation.

Keywords

COVID-19
Transmission dynamics model
Clinical resource demands
Vaccination

Cited by (0)

#

These authors contributed equally to this work.