Skip to main content
Log in

Compact Dual-Band Circularly Polarized Inverted y-Shaped Printed Monopole Antenna with Edge Ground

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

A compact dual-band circularly polarized (CP) printed antenna with microstrip line feed is studied in this paper. It consists of an inverted y-shaped radiator with an edge ground plane on the opposite side of the substrate. The edge ground plane plays important role in impedance bandwidth (IBW) enhancement. In order to enhance the axial ratio bandwidth (ARBW) by a significant amount, the dimensions of the inverted y-shaped radiator are optimized. The value of measured IBW is equal to 4.48 GHz (4.94–9.42 GHz; 62.39%) with the resonant frequency fr = 7.18 GHz. The proposed design exhibits the simulated IBW of 5.557 GHz (4.933–10.490 GHz; 72.05%) with the resonant frequency fr = 7.7 GHz. The corresponding simulated ARBWs are equal to 742.5 MHz (fCP1 = 6.32 GHz, 11.75%) and 1091.8 MHz (fCP2 = 8.32 GHz, 13.12%) within the range of simulated and measured IBW, respectively. The presented antenna is compact with the optimized dimension of 20×20×1.6 mm3, i.e. 0.54×0.54×0.044λgL3, where λgL is the guided wavelength at the simulated lower resonant frequency fgL = 4.933 GHz with size reduction of 39.7%. It is fabricated on the low cost FR-4 substrate with copper cladding. Measurement results validate simulated data from Ansys Electronics Desktop 2020 R1. The maximum simulated peak gain is equal to 4.796 dBi at 8.64 GHz within the CP band. The proposed antenna can be suitable for some portions of C- and X-, and ITU-8 GHz band wireless communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.

Similar content being viewed by others

References

  1. B. Y. Toh, R. Cahill, V. F. Fusco, "Understanding and measuring circular polarization," IEEE Trans. Educ., v.46, n.3, p.313 (2003). DOI: https://doi.org/10.1109/TE.2003.813519.

    Article  Google Scholar 

  2. R. Garg, P. Bhartia, I. J. Bahl, A. Ittipiboon, Microstrip Antenna Design Handbook (Artech House, 2001).

    Google Scholar 

  3. W. L. Langston, D. R. Jackson, "Impedance, axial-ratio, and receive-power bandwidths of microstrip antennas," IEEE Trans. Antennas Propag., v.52, n.10, p.2769 (2004). DOI: https://doi.org/10.1109/TAP.2004.834421.

    Article  Google Scholar 

  4. Intelsat, Glob. NetworkIntelsat. URI: http://www.intelsat.com/global-network/.

  5. A. Kirilyuk, A. V. Kimel, T. Rasing, "Ultrafast optical manipulation of magnetic order," Rev. Mod. Phys., v.82, n.3, p.2731 (2010). DOI: https://doi.org/10.1103/RevModPhys.82.2731.

    Article  Google Scholar 

  6. D. V. Chubukov, L. V. Skripnikov, L. Bougas, L. N. Labzowsky, "P,T-odd Faraday rotation on atoms and molecules in intra-cavity absorption spectroscopy as an alternative way to search for the P,T-odd effects in nature," (2019). URI: http://arxiv.org/abs/1907.11761.

  7. J. Sen Kuo, G. Bin Hsieh, "Gain enhancement of a circularly polarized equilateral-triangular microstrip antenna with a slotted ground plane," IEEE Trans. Antennas Propag., v.51, n.7, p.1652 (2003). DOI: https://doi.org/10.1109/TAP.2003.813621.

    Article  Google Scholar 

  8. K. L. Chung, "A wideband circularly polarized H-shaped patch antenna," IEEE Trans. Antennas Propag., v.58, n.10, p.3379 (2010). DOI: https://doi.org/10.1109/TAP.2010.2055794.

    Article  Google Scholar 

  9. A. K. Gautam, A. Kunwar, B. K. Kanaujia, "Circularly polarized arrowhead-shape slotted microstrip antenna," IEEE Antennas Wirel. Propag. Lett., v.13, p.471 (2014). DOI: https://doi.org/10.1109/LAWP.2014.2309719.

    Article  Google Scholar 

  10. J. M. Kovitz, H. Rajagopalan, Y. Rahmat-Samii, "Circularly polarised half E-shaped patch antenna: A compact and fabrication-friendly design," IET Microwaves, Antennas Propag., v.10, n.9, p.932 (2016). DOI: https://doi.org/10.1049/iet-map.2015.0550.

    Article  Google Scholar 

  11. G. Bin Hsieh, M. H. Chen, K. L. Wong, "Single-feed dual-band circularly polarised microstrip antenna," Electron. Lett., v.34, n.12, p.1170 (1998). DOI: https://doi.org/10.1049/el:19980909.

    Article  Google Scholar 

  12. Nasimuddin, Z. N. Chen, X. Qing, "Dual-band circularly polarized S-shaped slotted patch antenna with a small frequency-ratio," IEEE Trans. Antennas Propag., v.58, n.6, p.2112 (2010). DOI: https://doi.org/10.1109/TAP.2010.2046851.

    Article  Google Scholar 

  13. C.-J. Wang, M.-H. Shih, L.-T. Chen, "A wideband open-slot antenna with dual-band circular polarization," IEEE Antennas Wirel. Propag. Lett., v.14, p.1306 (2015). DOI: https://doi.org/10.1109/LAWP.2015.2403572.

    Article  Google Scholar 

  14. K. Kandasamy, B. Majumder, J. Mukherjee, K. P. Ray, "Dual-band circularly polarized split ring resonators loaded square slot antenna," IEEE Trans. Antennas Propag., v.64, n.8, p.3640 (2016). DOI: https://doi.org/10.1109/TAP.2016.2565729.

    Article  MathSciNet  MATH  Google Scholar 

  15. Q. Chen, H. Zhang, L. Yang, H. Li, T. Zhong, X. Min, S. Tan, "Novel dual-band asymmetric U-shaped slot antenna for dual-circular polarization," Int. J. RF Microw. Comput. Eng., v.27, n.1, p.e21047 (2017). DOI: https://doi.org/10.1002/mmce.21047.

    Article  Google Scholar 

  16. K. Saraswat, A. R. Harish, "Dual-band CP coplanar waveguide-fed split-ring resonator-loaded G-shaped slot antenna with wide-frequency ratio," IET Microwaves, Antennas Propag., v.12, n.12, p.1920 (2018). DOI: https://doi.org/10.1049/iet-map.2018.0173.

    Article  Google Scholar 

  17. A. A. Deshmukh, P. Zaveri, "Sequentially rotated gap‐coupled variations of plus shape microstrip antennas for dual band circular polarized response," Int. J. RF Microw. Comput. Eng., v.28, n.9 (2018). DOI: https://doi.org/10.1002/mmce.21431.

    Article  Google Scholar 

  18. R. Xu, J. Li, J. Liu, S. Zhou, K. Wei, "Design of spiral slot-based dual-wideband dual-sense CP antenna," IET Microwaves, Antennas Propag., v.13, n.1, p.76 (2019). DOI: https://doi.org/10.1049/iet-map.2018.5372.

    Article  Google Scholar 

  19. A. M. Jie, N. Nasimuddin, M. F. Karim, K. T. Chandrasekaran, "A dual-band efficient circularly polarized rectenna for RF energy harvesting systems," Int. J. RF Microw. Comput. Eng., v.29, n.1, p.e21665 (2019). DOI: https://doi.org/10.1002/mmce.21665.

    Article  Google Scholar 

  20. D. Barad, S. Mohapatra, S. B. Behera, S. Behera, "Integrated circular polarized microstrip antenna with dual-mode-polarization insensitive characteristics," Int. J. RF Microw. Comput. Eng., v.30, n.2, p.222039 (2020). DOI: https://doi.org/10.1002/mmce.22039.

    Article  Google Scholar 

  21. A. A. Qureshi, M. U. Afzal, T. Tauqeer, M. A. Tarar, "Performance analysis of FR-4 substrate for high frequency microstrip antennas," in 2011 China-Japan Joint Microwave Conference (IEEE, Washington, 2011). URI: https://ieeexplore.ieee.org/document/5773952.

    Google Scholar 

  22. S. J. Mumby, J. Yuan, "Dielectric properties of FR-4 laminates as a function of thickness and the electrical frequency of the measurement," J. Electron. Mater., v.18, n.2, p.287 (1989). DOI: https://doi.org/10.1007/BF02657420.

    Article  Google Scholar 

  23. N. K. Tiwari, Y. Tiwari, M. J. Akhtar, "Design of CSRR-based electronically tunable compact RF sensor for material testing," IEEE Sensors J., v.18, n.18, p.7450 (2018). DOI: https://doi.org/10.1109/JSEN.2018.2861365.

    Article  Google Scholar 

  24. J. Wu, X. Ren, Z. Wang, Y. Yin, "Broadband circularly polarized antenna with L-shaped strip feeding and shorting-pin loading," IEEE Antennas Wirel. Propag. Lett., v.13, p.1733 (2014). DOI: https://doi.org/10.1109/LAWP.2014.2354050.

    Article  Google Scholar 

  25. R. Xu, J.-Y. Li, Y.-X. Qi, G.-W. Yang, J.-J. Yang, "A design of triple-wideband triple-sense circularly polarized square slot antenna," IEEE Antennas Wirel. Propag. Lett., v.16, p.1763 (2017). DOI: https://doi.org/10.1109/LAWP.2017.2674677.

    Article  Google Scholar 

  26. P. V. Naidu, A. Kumar, "ACS-fed e-shaped dual band uniplanar printed antenna for modern wireless communication applications," Radioelectron. Commun. Syst., v.61, n.3, p.87 (2018). DOI: https://doi.org/10.3103/S0735272718030019.

    Article  Google Scholar 

  27. P. V. Naidu, A. Kumar, "ACS-fed wideband mirrored Z- and L-shaped triple band uniplanar antenna for WLAN applications," Radioelectron. Commun. Syst., v.62, n.2, p.86 (2019). DOI: https://doi.org/10.3103/S0735272719020043.

    Article  Google Scholar 

  28. J.-Y. Sze, J.-C. Wang, C.-C. Chang, "Axial-ratio bandwidth enhancement of asymmetric-CPW-fed circularly-polarised square slot antenna," Electron. Lett., v.44, n.18, p.1048 (2008). DOI: https://doi.org/10.1049/el:20081858.

    Article  Google Scholar 

  29. C. Sun, H. Zheng, L. Zhang, Y. Liu, "Analysis and design of a novel coupled shorting strip for compact patch antenna with bandwidth enhancement," IEEE Antennas Wirel. Propag. Lett., v.13, p.1477 (2014). DOI: https://doi.org/10.1109/LAWP.2014.2341596.

    Article  Google Scholar 

  30. B. T. P. Madhav, M. Monika, B. M. S. Kumar, B. Prudhvinadh, "Dual band reconfigurable compact circular slot antenna for WiMAX and X-band applications," Radioelectron. Commun. Syst., v.62, n.9, p.474 (2019). DOI: https://doi.org/10.3103/S0735272719090048.

    Article  Google Scholar 

  31. M. Rezvani, Y. Zehforoosh, P. Beigi, "Circularly-polarized and high-efficiency microstrip antenna with C-shaped stub for WLAN and WiMAX applications," Radioelectron. Commun. Syst., v.62, n.11, p.604 (2019). DOI: https://doi.org/10.3103/S0735272719110062.

    Article  Google Scholar 

  32. R. Dhara, S. K. Jana, M. Mitra, "Tri-band circularly polarized monopole antenna for wireless communication application," Radioelectron. Commun. Syst., v.63, n.4, p.213 (2020). DOI: https://doi.org/10.3103/S0735272720040044.

    Article  Google Scholar 

  33. R. Dhara, "Quad-band circularly polarized CPW-fed G-shaped printed antenna with square slot," Radioelectron. Commun. Syst., v.63, n.7, p.376 (2020). DOI: https://doi.org/10.3103/S0735272720070055.

    Article  Google Scholar 

  34. R. Dhara, S. Yadav, M. M. Sharma, S. K. Jana, M. C. Govil, "A circularly polarized quad-band annular ring antenna with asymmetric ground plane using theory of characteristic modes," Prog. Electromagn. Res. M, v.100, p.51 (2021). DOI: https://doi.org/10.2528/PIERM20102006.

    Article  Google Scholar 

  35. R. Dhara, S. K. Jana, "A single microstrip feed C shaped dual circularly polarized slotted monopole antenna," in 2017 IEEE Applied Electromagnetics Conference (AEMC) (IEEE, Washington, 2017). DOI: https://doi.org/10.1109/AEMC.2017.8325637.

    Chapter  Google Scholar 

  36. R. Dhara, S. K. Jana, M. Mitra, A. Chatterjee, "A circularly polarized T-shaped patch antenna for wireless communication application," in 2018 IEEE Indian Conference on Antennas and Propogation (InCAP) (IEEE, 2018). DOI: https://doi.org/10.1109/INCAP.2018.8770806.

    Chapter  Google Scholar 

  37. R. Dhara, S. K. Jana, M. Mitra, "CPW-fed triple-band circularly polarized printed inverted C-shaped monopole antenna with closed-loop and two semi-hexagonal notches on ground plane," in Optical and Wireless Technologies (Springer, Singapore, 2020). DOI: https://doi.org/10.1007/978-981-15-2926-9_19.

    Chapter  Google Scholar 

  38. National Telecom. and Inform. Admin. Office of Spectrum Management, "Federal Spectrum Use Summary, 30 MHz – 3000 GHz" (2010).

  39. NASA, "Spectrum 101 An Introduction to National Aeronautics and Space Administration Spectrum Management" (2016).

  40. FCC, "Expanding Flexible Use in Mid-Band Spectrum Between 3.7 and 24 GHz" (2017).

  41. T. T. Le, H. C. Park, "Very simple circularly polarised printed patch antenna with enhanced bandwidth," Electron. Lett., v.50, n.25, p.1896 (2014). DOI: https://doi.org/10.1049/el.2014.2963.

    Article  Google Scholar 

  42. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New Jersey, 2016). URI: https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p-9781118642061.

    Google Scholar 

  43. G. Kumar, K. P. Ray, Broadband Microstrip Antennas (Artech House, Boston, MA and London, UK, 2002).

    Google Scholar 

  44. S. S. Gao, Q. Luo, F. Zhu, Circularly Polarized Antennas (Wiley-IEEE Press, 2014). URI: https://www.wiley.com/en-us/Circularly+Polarized+Antennas-p-9781118374412.

    Book  Google Scholar 

  45. R. Dhara, M. Mitra, "A triple-band circularly polarized annular ring antenna with asymmetric ground plane for wireless applications," Eng. Reports, v.2, n.4 (2020). DOI: https://doi.org/10.1002/eng2.12150.

    Article  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to Director, NIT Sikkim for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshmi Dhara.

Ethics declarations

ADDITIONAL INFORMATION

Reshmi Dhara and Taraknath Kundu

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S002134702103002X with DOI: https://doi.org/10.20535/S002134702103002X

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika, No. 3, pp. 146-163, March, 2021 https://doi.org/10.20535/S002134702103002X .

Supplementary material

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhara, R., Kundu, T. Compact Dual-Band Circularly Polarized Inverted y-Shaped Printed Monopole Antenna with Edge Ground. Radioelectron.Commun.Syst. 64, 125–139 (2021). https://doi.org/10.3103/S073527272103002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527272103002X

Navigation