Skip to main content
Log in

POD-analysis of the near field of a turbulent circular jet when mixing gases of different densities

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

A turbulent circular jet with variable density caused by the mixing of air with gases of different densities (air, helium, and carbon dioxide) is studied. The Reynolds number is fixed for all cases: Re = 5300. Using proper orthogonal decomposition and direct numerical simulation data, a comparative analysis of the three gases under consideration is carried out. It is shown that with a decrease in the ambient gas density, the frequency of coherent structures formation drops, and the number of proper orthogonal decomposition (POD) modes necessary for constructing a low-dimensional flow model decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.G. Ball, H. Fellouah, and A. Pollard, The flow field in turbulent round free jets, Progress Aerospace Sci., 2012, Vol. 50, P. 1–26.

    Article  ADS  Google Scholar 

  2. V.V. Kozlov, G.R. Grek, and Y.A. Litvinenko, Visualization of conventional and combusting subsonic jet instabilities, Springer International Publishing, Dordrecht, 2016.

    Book  Google Scholar 

  3. Z. Sterbacek and P. Tausk, Mixing in the Chemical Industry, Pergamon Press, London, 1965.

    Google Scholar 

  4. N.R. Panchapakesan and J.L. Lumley, Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet, J. Fluid Mech., 1993, Vol. 246, P. 197–224.

    Article  ADS  Google Scholar 

  5. N.R. Panchapakesan and J.L. Lumley, Turbulence measurements in axisymmetric jets of air and helium. Part 2. Helium jet, J. Fluid Mech., 1993, Vol. 246, P. 225–247.

    Article  ADS  Google Scholar 

  6. W.M. Pitts, Effects of global density ratio on the centerline mixing behavior of axisymmetric turbulent jets, Experiments in Fluids, 1991, Vol. 11, P. 125–134.

    Article  ADS  Google Scholar 

  7. W.M. Pitts, Reynolds number effects on the mixing behavior of axisymmetric turbulent jets, Experiments in Fluids, 1991, Vol. 11, P. 135–141.

    Article  ADS  Google Scholar 

  8. P. Chassing, G. Harran, and L. Joly, Density fluctuation correlations in free turbulent binary mixing, J. Fluid Mech., 1994, Vol. 279, P. 239–278.

    Article  ADS  Google Scholar 

  9. T. Djeridane, M. Amielh, F. Anselmet, and L. Fulachier, Velocity turbulence properties in the near-field region of axisymmetric variable density jets, Phys. of Fluids, 1996, Vol. 8, No. 6, P. 1614–1630.

    Article  ADS  Google Scholar 

  10. B. Talbot, N. Mazellier, B. Renou, L. Danaila, and M.A. Boukhalfa, Time-resolved velocity and concentration measurements in variable-viscosity turbulent jet flow, Experiments in Fluids, 2009, Vol. 47, P. 769–787.

    Article  ADS  Google Scholar 

  11. M. Amielh, T. Djeridane, F. Anselmet, and L. Fulachier, Velocity near-field of variable density turbulent jets, Inter. J. Heat Mass Transfer, 1996, Vol. 10, P. 2149–2164.

    Article  Google Scholar 

  12. P. Wang, J. Fröhlich, V. Michelassi, and W. Rodi, Large-eddy simulation of variable-density turbulent axisymmetric jets, Inter. J. Heat Fluid Flow, 2008, Vol. 29, No. 3, P. 654–664.

    Article  Google Scholar 

  13. K.R. Sreenivasan, S. Raghu, and D. Kyle, Absolute instability in variable density round jets, Experiments in Fluids, 1989, Vol. 7, No. 5, P. 309–317.

    Article  ADS  Google Scholar 

  14. S.A. Ahmed, R.M.C. So, and H.C. Mongia, Jet characteristics in confined swirling flow, Experiments in Fluids, 1985, Vol. 3, P. 231–238.

    Article  ADS  Google Scholar 

  15. C.C.K. Lai, J.J. Charonko, and K. Prestridge, A Kármán-Howarth-Monin equation for variable-density turbulence, J. Fluid Mech., 2018, Vol. 843, P. 382–418.

    Article  ADS  MathSciNet  Google Scholar 

  16. J.J. Charonko and K. Prestridge, Variable-density mixing in turbulent jets with coflow, J. Fluid Mech., 2017, Vol. 825, P. 887–921.

    Article  ADS  MathSciNet  Google Scholar 

  17. J.L. Lumley, The structure of inhomogeneous turbulent flows, Atmospheric Turbulence and Radio Wave Propagation, 1967, P. 166–178.

  18. B. Patte-Rouland, A. Danlos, G. Lalizel, E. Rouland, and P. Paranthoen, Proper orthogonal decomposition used for determination of the convection velocity of the initial zone of the annular jet, Inter. J. Computational Fluid Dynamics, 2008, Vol. 1, P. 1–10.

    Google Scholar 

  19. L. Sirovich, Turbulence and the dynamics of coherent structures. I. Coherent structures, Quarterly Applied Mathematics, 1987, Vol. 45, No. 3, P. 561–571.

    Article  ADS  MathSciNet  Google Scholar 

  20. R.E.A. Arndt, D.F. Long, and M.N. Glauser, The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet, J. Fluid Mech., 1997, Vol. 340, P. 1–33.

    Article  ADS  Google Scholar 

  21. J.B. Freund and T. Colonius, Turbulence and sound-field POD analysis of a turbulent jet, Intern. J. Aeroacoustics, 2009, Vol. 8, No. 4, P.337–354.

    Article  Google Scholar 

  22. O.T. Schmidt, A. Towne, G. Rigas, T. Colonius, and G.A. Bres, Spectral analysis of jet turbulence, J. Fluid Mech., 2018, Vol. 855, P. 953–982.

    Article  ADS  MathSciNet  Google Scholar 

  23. K.E. Meyer, J.M. Pedersen, and O. Ozcan, A turbulent jet in crossflow analysed with proper orthogonal decomposition, J. Fluid Mech., 2007, Vol. 583, P. 199–227.

    Article  ADS  MathSciNet  Google Scholar 

  24. D.M. Markovich, S.S. Abdurakipov, L.M. Chikishev, V.M. Dulin, and K. Hanjalic, Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decomposition, Phys. Fluids, 2014, Vol. 26, No. 5, P. 065109–1-065109-22.

    Article  ADS  Google Scholar 

  25. S. Paolucci, Filtering of Sound from the Navier-Stokes Equations, Sandia National Laboratories, Livermore, CA, USA, 1982, P. 3–52.

    Google Scholar 

  26. S. Gordon and B.J. McBride, Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis, NASA Report, 1994, P. 1–5.

  27. S. Volkwein, Proper orthogonal decomposition: theory and reduced-order modeling, Lecture Notes, University of Konstanz, 2013, Vol. 4, No. 4, P. 1–29.

    Google Scholar 

  28. P.F. Fischer, J.W. Lottes, and S.G. Kerkemeier, Nek5000 Web page, 2008, https://nek5000.mcs.anl.gov.

  29. A.T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 1984, Vol. 54, No. 3, P. 468–488.

    Article  ADS  Google Scholar 

  30. H.O. Kreiss and J. Oliger, Comparison of accurate methods for the integration of hyperbolic equations, Tellus, 1972, Vol. 24, No. 3, P. 199–215.

    Article  ADS  MathSciNet  Google Scholar 

  31. M.O. Deville, P.F. Fischer, and E.H. Mund, High-Order Methods for Incompressible Fluid Flow, Cambridge University Press, Cambridge, 2002, Vol. 9.

    Book  Google Scholar 

  32. A.G. Tomboulides, J.C.Y. Lee, and S.A. Orszag, Numerical simulation of low Mach number reactive flows, J. Sci. Computing, 1997, Vol. 12, No. 2, P. 139–167.

    Article  MathSciNet  Google Scholar 

  33. V.A. Ivashchenko, S.S. Abdurakipov, and R.I. Mullyadzhanov, DNS of round turbulent jets with variable density, AIP Conf. Proc., 2018, Vol. 2027, No. 1, P. 040027–1-040027-5.

    Article  Google Scholar 

  34. G.K. El Khoury, P. Schlatter, A. Noorani, P.F. Fischer, G. Brethouwer, and A.V. Johansson, Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers, Flow, Turbulence and Combustion, 2013, Vol. 91, No. 3, P. 475–495.

    Article  Google Scholar 

  35. R. Mullyadzhanov, S. Abdurakipov, and K. Hanjalic, Helical structures in the near field of a turbulent pipe jet, Flow, Turbulence and Combustion, 2017, Vol. 98, No. 2, P. 367–388.

    Article  Google Scholar 

  36. R.I. Mullyadzhanov, R.D. Sandberg, S.S. Abdurakipov, W.K. Geogre, and K. Hanjalic, Propagating helical waves as a building block of round turbulent jets, Phys. Review Fluids, 2018, Vol. 3, No. 6, P. 062601–1-062601-9.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Ivashchenko.

Additional information

The work was partially supported by the Russian Foundation for Basic Research (Grants No. 18-38-20167 and No. 19-08-01227), the development of the computational code was carried out within the framework of the state task for IT SB RAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivashchenko, V.A., Palkin, E.V., Ryzhenkov, V.O. et al. POD-analysis of the near field of a turbulent circular jet when mixing gases of different densities. Thermophys. Aeromech. 28, 55–64 (2021). https://doi.org/10.1134/S0869864321010066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864321010066

Keywords

Navigation