Skip to main content
Log in

In Situ Generated Organic Peroxides in Oxidative Desulfurization of Naphtha Reformate

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper describes a method developed for the oxidation of organosulfur compounds using organic peroxides generated in situ under the action of atmospheric oxygen on gasoline fraction after reforming. Naphtha reformate that contained dibenzothiophene as a model substrate was subjected to oxidative desulfurization by organic peroxides generated in situ under atmospheric oxygen. The study examined various catalytic systems, including immobilized Anderson-type polyoxometalates, and initiators, which, in combination, provided effective generation of alkyl hydroperoxides, selective oxidation of organosulfur compounds in the hydrocarbon feedstock, and a high conversion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Petrukhina, N.N. and Vostrikova, Yu.V., Nekotorye aspekty prevrashchenii vysokomolekulyarnyh soedinenii neftei v protsesse okislitel’nogo obesserivaniya (Some Aspects of Conversions of High Molecular Weight Compounds of Oil in the Process of Oxidative Desulfurization), Moscow: RGU Nefti i Gaza im. I.M. Gubkina, 2013, p. 3.

  2. Akopyan, A.V., Fedorov, R.A., Anisimov, A.V., Eseva, E.A., and Karakhanov, E.А., Petrol. Chem., 2017, vol. 57, no. 12, pp. 1132–1136. https://doi.org/10.1134/S0965544117060123

    Article  CAS  Google Scholar 

  3. Anisimov, A.V. and Tarakanova, A.V., Russ. J. Gen. Chem., 2009, vol. 79, no. 4, p. 1264. https://doi.org/10.1134/S1070363209060437

  4. Rakhmanov, E.V., Akopyan, A.V., Tarakanova, A.V., Lesin, S.V., Vinokurov, V.A., Glotov, A.P., Movsesyan, A.K., and Anisimov, A.V., Khim. Tekhnol., 2016, vol. 17, no. 11, pp. 31–35.

    Google Scholar 

  5. Akopyan, A.V., Polikarpova, P.D., Anisimov, A.V., Lysenko, S.V., Maslova, O.V., Stepanov, N.A., Sen’ko, O.V., and Efremenko, E.N., Khim. Tekhnol., 2020, vol. 21, no. 6, pp. 242–250. https://doi.org/10.31044/1684-5811-2020-21-6-242-250

    Article  Google Scholar 

  6. Xiaoliang, M. and Anning, Z., Catal. Today, 2007, vol. 123, pp. 276–284. https://doi.org/10.1016/j.cattod.2007.02.036

    Article  CAS  Google Scholar 

  7. Zhou, X., Li, J., Wang, X., Jin, K., and Ma, W., Fuel Proc. Technol., 2009, vol. 90, pp. 317–323. https://doi.org/10.1016/j.fuproc.2008.09.002

    Article  CAS  Google Scholar 

  8. Rao, T.V., Sain, B., Kafola, S., Nautiyal, B.R., Sharma, Y.K., Nanoti, S.M., and Garg, M.O., Energy Fuels, 2007, vol. 21, pp. 3420–3424. https://doi.org/10.1021/ef700245g

    Article  CAS  Google Scholar 

  9. Murata, S., Murata, K., Kidena, K., and Nomura, M., Energy Fuels, 2004, vol. 18, pp. 116–121. https://doi.org/10.1021/ef034001z

    Article  CAS  Google Scholar 

  10. Minaev, B.F., Russ. Chem. Rev., 2007, vol. 76, no. 11, pp. 989–1012. https://doi.org/10.1070/RC2007v076n11ABEH003720

    Article  CAS  Google Scholar 

  11. Ismagilov, Z., Yashnik, S., Kerzhentsev, M., Parmon, V., Bourane, A., Al-Shahrani, F.M., Hajji, A.A., and Koseoglu, O.R., Catal. Rev.-Sci. Eng., 2011, vol. 53, no. 3, pp. 199–255. https://doi.org/10.1080/01614940.2011.596426

    Article  CAS  Google Scholar 

  12. Guo, W., Wang, C., Lin, P., and Lu, X., Appl. Energy, 2011, vol. 88, pp. 175–179. https://doi.org/10.1016/j.apenergy.2010.08.003

    Article  CAS  Google Scholar 

  13. Sundararaman, R., Ma, X., and Song, C., Ind. Eng. Chem. Res., 2010, vol. 49, pp. 5561–5568. https://doi.org/10.1021/ie901812r

    Article  CAS  Google Scholar 

  14. Potekhin, V.M. and Potekhin, V.V., Osnovy teorii khimicheskikh protsessov tekhnologii organicheskikh veshchestv i neftepererabotki (Fundamentals of the Theory of Chemical Processes, Technology of Organic Substances and Oil Refining), St. Petersburg: Khimizdat, 2005, p. 912.

  15. Wang, C., Liu, Z.,Gao, R., Liu, J., An, S., Zhang, R., and Zhao, J., New J. Chem., 2020. https://doi.org/10.1039/C9NJ06271H

  16. Eseva, E., Akopyan, A., Schepina, A., Anisimov, A., and Maximov, A., Cat. Com., 2021, vol. 149, pp. 106256. https://doi.org/10.1016/j.catcom.2020.106256

    Article  CAS  Google Scholar 

  17. Khenkin, А. and Neumann, R., ChemSusChem., 2011, vol. 4, pp. 346–348. https://doi.org/10.1002/cssc.201000402

    Article  CAS  PubMed  Google Scholar 

  18. Polikarpova, P., Akopyan, A., Shigapova, A., Glotov, A., Anisimov, A., and Karakhanov, E., Energy Fuels, 2018, vol. 32, no. 10, pp. 10898–10903. https://doi.org/10.1021/acs.energyfuels.8b02583

    Article  CAS  Google Scholar 

  19. Nomiya, K., Takahashi, T., Shirai, T., and Miwa, M., Polyhedron, 1987, vol. 6(2), pp. 213–218. https://doi.org/10.1016/S0277-5387(00)80791-3

    Article  CAS  Google Scholar 

  20. Safa, M.A. and Ma, X., Fuel, 2016, vol. 171, pp. 238–246. https://doi.org/10.1016/j.fuel.2015.12.050

    Article  CAS  Google Scholar 

  21. Petkevich, T.S., Kovalenko, N.A., and Mitskevich, N.I., Izv. Akad. Nauk BSSR, 1986, no. 5, pp. 20–24.

    Google Scholar 

  22. Nedosenko, A.V. and Chervinskii, K.A., Khim. Prom–t’, 1971, no. 7, pp. 25–26.

    Google Scholar 

  23. Rakhmanov, Je.V., Tarakanova, A.V., Valieva, T.U., Akopyan, A.V., Litvinova, V.V., Maksimov, A.L., Anisimov, A.V., Vakarin, S.V., Semerikova, O.L., and Zaikov, Yu.P., Petrol. Chem., 2014, vol. 54, no. 1, pp. 48–50. https://doi.org/10.1134/S0965544114010101

    Article  CAS  Google Scholar 

  24. Li, S., Gao, R., Zhang, R., and Zhao, J., Fuel, 2016, vol. 184, pp. 18–27. https://doi.org/10.1016/j.fuel.2016.06.132

    Article  CAS  Google Scholar 

  25. Yang, H., Zhang, Q., Zhang, J., Yang, L., Ma, Z., Wang, L., Li, H., Bai, L., Wei, D., Wang, W., and Chen, H., J. Colloid Int. Sci., 2019, vol. 554, pp. 572–579. https://doi.org/10.1016/j.jcis.2019.07.036

    Article  CAS  Google Scholar 

  26. Shi, Y., Liu, G., Zhang, B., and Zhang, X., Green Chem., 2016, vol. 18, pp. 5273–5279. https://doi.org/10.1039/C6GC01357K

    Article  CAS  Google Scholar 

Download references

Funding

The study described here was performed with financial support from the Russian Foundation for Basic Research (research project no. 20-33-90330\20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Eseva.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 3, pp. 367–379 https://doi.org/10.31857/S0028242121030084.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eseva, E.A., Akopyan, A.V., Sinikova, N.A. et al. In Situ Generated Organic Peroxides in Oxidative Desulfurization of Naphtha Reformate. Pet. Chem. 61, 472–482 (2021). https://doi.org/10.1134/S0965544121050133

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121050133

Keywords:

Navigation