Skip to main content
Log in

Optimization of Methods for Purification of Gas Mixtures to Remove Carbon Dioxide (A Review)

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This review provides an analysis of modern process technologies for carbon dioxide removal from various gas mixtures (such as natural gas or hydrocarbon conversion gases in ammonia and syngas production facilities), as well as from flue gases generated during the combustion of carbon-containing feedstocks in power plants. The review also discusses various approaches to improve absorption/desorption processes, both in terms of extending the range of practicable amine solvents and the prospects for the implementation of a new equipment type, namely membrane contactors based on hollow fiber membranes or ceramic tubular elements. Finally, the paper describes a process configuration for the decarbonation of rich amine solvents at ≤90°C using 12% monoethanolamine (MEA) solutions to prevent the solvent from thermo-oxidative degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. British Petrolеum Statistical Review of World Energy, 2019, p. 2.

  2. Inventory of US Greenhouse Gas Emissions and Sinks: 1990−2015, United States Environmental Protection Agency, Washington, DC, 2017.

  3. Psarras, P.C., Comello, S., Bains, P., Charoensawadpong, P., Reichelstein, S., and Wilcox, J., Environ. Sci. Technol., 2017, vol. 51, no. 19, pp. 11440–11449. https://doi.org/10.1021/acs.est.7b01723

    Article  CAS  PubMed  Google Scholar 

  4. Bottoms R.R., US Patent 1783901, 1930.

  5. Bailey, B.W. and Feron, P.H.M., Oil & Gas Sci. Technol., 2005, vol. 60, no. 3, pp. 461–474. https://doi.org/10.2516/ogst:2005028

    Article  CAS  Google Scholar 

  6. Liang, Z., Rongwong, W., Liu, H., Fu, K., Gao, H., Cao, F., Zhang, R., Sema, T., Henni, A., Sumon, K., Nath, D., Gelowitz, D., Srisang, W., Saiwan, C., Benamord, A., Al-Marri, M., Shi, H., Supap, T., Chan, C., Zhou, Q., Abu-Zahra, M., Wilson, M., Olson, W., Idem, R., and Tontiwachwuthikul, P., Int. J. Greenhouse Gas Control. Rev., 2015, vol. 40, pp. 26–54. https://doi.org/10.1016/j.ijggc.2015.06.017

    Article  CAS  Google Scholar 

  7. Sreenivasulu, B., Gayatri, D.V., Sreedhar, I., and Raghavan, K.V., Ren. Sust. Energy Rev., 2015, vol. 41, pp. 1324–1350. https://doi.org/10.1016/j.rser.2014.09.029

    Article  CAS  Google Scholar 

  8. Abu-Zahra, M.R.M., Niederer, J.P.M., Feron, P.H.M., and Versteeg, G.F., Int. J. Greenhouse Gas Control., 2007, vol. 1, pp. 135–142. https://doi.org/10.1016/S1750-5836(06)00007-7

    Article  CAS  Google Scholar 

  9. Wang, T., Hovland, J., and Jens, K.J., J. Environ. Sci., 2015, vol. 27, pp. 276–289. https://doi.org/10.1016/j.jes.2014.06.037

    Article  CAS  Google Scholar 

  10. Rochelle, G.T., Science, 2009, vol. 325, no. 5948, pp. 1652–1654. https://doi.org/10.1126/science.1176731

    Article  CAS  PubMed  Google Scholar 

  11. Wack, E.G., Shuklin, G.V., and Leites, I.L., Poluchenie tekhnologicheskogo gaza v proizvodstvakh ammiaka, metanola, vodoroda i vysshikh uglevodorodov. Teoreticheskie osnovy, tekhnologiya, katalizatory, oborudovanie, sistemy upravleniya (Production of Process Gas in The Production of Ammonia, Methanol, Hydrogen and Higher Hydrocarbons. Theoretical Foundations, Technology, Catalysts, Equipment, Control Systems), Moscow: ISBN 978-5-98801-33-3, 2011.

  12. Davis, J. and Rochelle, G., Energy Proced., 2009, vol. 1, pp. 327–333. https://doi.org/10.1016/j.egypro.2009.01.045

    Article  CAS  Google Scholar 

  13. Dutcher, B., Fan, M., and Russell, A.G., ACS Appl. Mater. Interfac., 2015, vol. 7, no. 4, pp. 2137–2148. https://doi.org/10.1021/am507465f

    Article  CAS  Google Scholar 

  14. Moser, P., Schmidt, S., and Stahl, K., Energy Proced., 2011, vol. 4, pp. 473–479. https://doi.org/10.1016/j.egypro.2011.01.077

    Article  CAS  Google Scholar 

  15. Butwell, K.F., Kubek, D.J., and Sigmund, P.W., Hydrocarbon Proc., 1982, vol. 61, no. 3, p. 108.

    CAS  Google Scholar 

  16. Thompson, G.J., Frimpong, R., Remias, J.E., Neathery, J.K., and Liu, K., Aerosol Air Qual. Res., 2014, vol. 14, pp. 550–558. https://doi.org/10.4209/aaqr.2013.05.0150

    Article  CAS  Google Scholar 

  17. Kohl, A. and Nielsen, R., Gas Purification, Houston: Gulf Publishing Company, 4 ed., 1993, pp. 41–186.

  18. Gouedard, C., Picq, D., Launay, F., and Carrette, P.L., Int. J. Greenhouse Gas Control., 2012, vol. 10, pp. 244–270. https://doi.org/10.1016/j.ijggc.2012.06.015

    Article  CAS  Google Scholar 

  19. Dumee, L., Scholes, C., Stevens, G., and Kentish, S., Int. J. Greenhouse Gas Control., 2012, vol. 10, pp. 443–455. https://doi.org/10.1016/j.ijggc.2012.07.005

    Article  CAS  Google Scholar 

  20. Nielsen, R.B., Lewis, K.R., McCullough, J.G., and Hansen, D.A., NACE Intl., 1995, no. 571, pp. 1–26.

    Google Scholar 

  21. Soosaiprakasam, I.R., Amornvadee, V., Int. J. Greenhouse Gas Control., 2008, vol. 2, pp. 553–562. https://doi.org/10.1016/j.ijggc.2008.02.009

    Article  CAS  Google Scholar 

  22. Veldman, R.R., NACE Intl., 2000, no. 496, pp. 1–13.

    Google Scholar 

  23. Vazquez, R.C., Rios, G., Trejo, A., Rincon, R.E., Uruchurtu, J., and Malo, J.M., NACE Intl., 2000, no. 696, pp. 1–11.

    Google Scholar 

  24. Tanthapanichakoon, W., Veawab, A., and McGarvey, B., Indust. Eng. Chem. Res., 2006, vol. 45, no. 8, pp. 2586–2593. https://doi.org/10.1021/ie050575a

    Article  CAS  Google Scholar 

  25. Kittel, J. and Gonzalez, S., Oil & Gas Sci. Technol., 2014, vol. 65, no. 5, pp. 915–929. https://doi.org/10.2516/ogst/2013161

    Article  Google Scholar 

  26. Kittel, J., Fleury, E., Vuillemin, B., Gonzalez, S., Ropital, F., and Oltra, R., Mater. Corros., 2012, vol. 63, no. 3, pp. 223–230. https://doi.org/10.1002/maco.201005847

    Article  CAS  Google Scholar 

  27. Nielsen, R.B., Lewis, K.R., McCullough, J.G., and Hansen, D.A., Proceedings of the 45th Laurance Reid Gas Conditioning Conference, Norman, OK, 1995, pp. 1–33.

  28. Wagner, R. and Judd, B., Proceedings of the 56th Laurance Reid Gas Conditioning Conference, Norman, OK, 2006.

  29. Kittel, J., Idem, R., Gelowitz, D., Tontiwachwuthikul, P., Parrain, G., and Bonneau, A., Energy Proced., 2010, vol. 1, pp. 791–797. https://doi.org/10.1016/j.egypro.2009.01.105

    Article  CAS  Google Scholar 

  30. Tems, R. and Al-Zahrani, A., NACE Intl., 2006, no. 444, pp. 1–12.

    Google Scholar 

  31. Léonard, G., Voice, A., Toye, D., and Heyen, G., Indust. Eng. Chem. Res., 2014, vol. 53, no. 47, pp. 18121–18129. https://doi.org/10.1021/ie5036572

    Article  CAS  Google Scholar 

  32. Xiao, J., Li, C.-W., and Li, M.-H., Chem. Eng. Sci., 2000, vol. 55, no. 1, pp. 161–175. https://doi.org/10.1016/S0009-2509(99)00303-6

    Article  CAS  Google Scholar 

  33. Stowe, H.M. and Hwang, G.S., Indust. Eng. Chem. Res.., 2017, vol. 56, no. 24, pp. 6887–6899. https://doi.org/10.1021/acs.iecr.7b00213

    Article  CAS  Google Scholar 

  34. Blauwhoff, P.P.M., Versteeg, G.F., and van Swaaij, W.P.M., Chem. Eng. Sci., 1984, vol. 39, no. 2, pp. 207–225. https://doi.org/10.1016/0009-2509(84)80021-4

    Article  CAS  Google Scholar 

  35. Ma’mun, S., Svendsen, H.F., Hoff, K.A., and Juliussen, O., Energy Convers. Managem., 2007, vol. 48, no. 1, pp. 251–258. https://doi.org/10.1016/j.enconman.2006.04.007

    Article  CAS  Google Scholar 

  36. Liao, C.-H. and Li, M.-H., Chem. Eng. Sci., 2002, vol. 57, no. 21, pp. 4569–4582. https://doi.org/10.1016/S0009-2509(02)00395-0

    Article  CAS  Google Scholar 

  37. Hossain, M.M. and de Lasa, H.I., Chem. Eng. Sci., 2008, vol. 63, pp. 4433–4451. https://doi.org/10.1016/j.ces.2008.05.028

    Article  CAS  Google Scholar 

  38. Jones, C.W., Ann. Rev. Chem. Biomol. Eng., 2011, vol. 2, pp. 31–52. https://doi.org/10.1146/annurev-chembioeng-061010-114252

    Article  CAS  Google Scholar 

  39. Rashid, H., Khan, K., Yaseen, M., and Umar, M.N., Theor. Exp. Chem., 2014, vol. 49, no. 6, pp. 371–375. https://doi.org/10.1007/s11237-014-9337-y

    Article  CAS  Google Scholar 

  40. Zhang, Z., Yao, Z.-Z., Xiang, S., and Chen, B., Energy Environ. Sci., 2014, vol. 7, pp. 2868–2899. https://doi.org/10.1039/C4EE00143E

    Article  CAS  Google Scholar 

  41. Lu, X., Jin, D., Wei, S., Wang, Z., An, C., and Guo, W., J. Mater. Chem. A, 2015, vol. 3, pp. 12118–12132. https://doi.org/10.1016/S1001-0742(08)60002-9

    Article  CAS  Google Scholar 

  42. Choi, S., Drese, J.H., Eisenberger, P.M., and Jones, C., Environ. Sci. Technol., 2011, vol. 45, no. 6, pp. 2420–2427. https://doi.org/10.1021/es102797w

    Article  CAS  PubMed  Google Scholar 

  43. Goeppert, A., Czaun, M., May, R.B., Prakash, G.K.S., Olah, G.A., and Narayanan, S.R., J. Am. Chem. Soc., 2011, vol. 133, no. 50, pp. 20164–20167. https://doi.org/10.1021/ja2100005

    Article  CAS  PubMed  Google Scholar 

  44. Goeppert, A., Zhang, H., Czaun, M., May, R.B., Prakash, G.K.S., Olah, G.A., and Narayanan, S.R., ChemSus Chem., 2014, vol. 7, no. 5, pp. 1386–1397. https://doi.org/10.1002/cssc.201301114

    Article  CAS  Google Scholar 

  45. Belmabkhout, Y., Serna-Guerrero, R., and Sayari, A., Chem. Eng. Sci., 2010, vol. 65, no. 11, pp. 3695–3698. https://doi.org/10.1016/j.ces.2010.02.044

    Article  CAS  Google Scholar 

  46. Serna-Guerrero, R., Belmabkhout, Y., and Sayari, A., Chem. Eng. J., 2010, vol. 161, nos. 1–2, pp. 173–181. https://doi.org/10.1016/j.cej.2010.04.024

    Article  CAS  Google Scholar 

  47. Qi, G., Fu, L., Choi, B.H., and Giannelis, E.P., Energy Environ. Sci., 2012, vol. 5, pp. 7368–7375. https://doi.org/10.1039/c2ee21394j

    Article  CAS  Google Scholar 

  48. Titinchi, J.J.S., Piet, M., Abbo, H.S., Bolland, O., and Schwieger, W., Energy Proc., 2014, vol. 63, pp. 8153–8160. https://doi.org/10.1016/j.egypro.2015.12.337

    Article  CAS  Google Scholar 

  49. Dantas, T.L.P., Luna, F.M.T., Silva, I.J.Jr., de Azevedo, D.C.S., Grande, C.A., Rodrigues, A.E., and Moreira, F.P.M., Chem. Eng. J., 2011, vol. 169, pp. 11–19. https://doi.org/10.1016/j.cej.2010.08.026

    Article  CAS  Google Scholar 

  50. Kowles, G.P., Graham, J.V., Delaney, S.W., and Chaffe, A.L., Fuel Proc. Technol., 2005, vol. 86, nos. 14–15, pp. 1435–1448. https://doi.org/10.1016/j.fuproc.2005.01.014

    Article  CAS  Google Scholar 

  51. Rashidi, A., Yusup, S., and Hameed, B.H., Energy, 2013, vol. 61, pp. 440–446. https://doi.org/10.1016/j.energy.2013.08.050

    Article  CAS  Google Scholar 

  52. Xu, Y., Goh, K., Wang, R., and Bae, T.-H., Separat. Purificat. Technol., 2019, vol. 229, p. 115791. https://doi.org/10.1016/j.seppur.2019.115791

    Article  CAS  Google Scholar 

  53. Bougie, F. and Iliuta, M.C., Int. J. Greenhouse Gas Control., 2014, vol. 29, pp. 16–21. https://doi.org/10.1016/j.ijggc.2014.07.008

    Article  CAS  Google Scholar 

  54. Dugay, J., Bontemps, D., Louis-Louisy, M., and Vial, J., Int. J. Greenhouse Gas Control, 2018, vol. 72, pp. 138–151. https://doi.org/10.1016/j.ijggc.2018.03.014

    Article  CAS  Google Scholar 

  55. Conway, W., Bruggink, S., Beyad, Y., Luo, W., MeliánCabrera, I., Puxty, G., and Feron, P., Chem. Eng. Sci., 2015, vol. 126, pp. 446–454. https://doi.org/10.1016/j.ces.2014.12.053

    Article  CAS  Google Scholar 

  56. Kierzkowska-Pawlak, H., Int. J. Greenhouse Gas Control., 2015, vol. 37, pp. 76–84. https://doi.org/10.1016/j.ijggc.2015.03.002

    Article  CAS  Google Scholar 

  57. Osagie, E., Biliyok, C., Di Lorenzo, G., and Manovic, V., Energy Proced., 2017, vol. 114, pp. 1930–1939. https://doi.org/10.1016/j.egypro.2017.03.1324

    Article  CAS  Google Scholar 

  58. Liang, Y., Liu, H., Rongwong, W., Liang, Z., Idem, R., and Tontiwachwuthikul, P., Fuel, 2015, vol. 144, pp. 121–129. https://doi.org/10.1016/j.fuel.2014.11.098

    Article  CAS  Google Scholar 

  59. Hadri, E.L.N., Quang, D.V., and Abu-Zahra, M.R.M., Energy Proced., 2015, vol. 75, pp. 2268–2286. https://doi.org/10.1016/j.egypro.2015.07.414

    Article  CAS  Google Scholar 

  60. Jamal, A., Meisen, A., and Lim, C.J., Chem. Eng. Sci., 2006, vol. 61, no. 19, pp. 6590–6603. https://doi.org/10.1016/j.ces.2006.04.047

    Article  CAS  Google Scholar 

  61. Wang, T. and Jens, K.-J., Industr. Eng. Chem. Res., 2012, vol. 51, no. 18, pp. 6529–6536. https://doi.org/10.1021/ie300346j

    Article  CAS  Google Scholar 

  62. Wang, T. and Jens, K.-J., Energy Proced., 2013, vol. 37, pp. 306–313. https://doi.org/10.1016/j.egypro.2013.05.116

    Article  CAS  Google Scholar 

  63. Wang, T. and Jens, K.-J., Int. J. Greenhouse Gas Control., 2014, vol. 24, pp. 98–105. https://doi.org/10.1016/j.ijggc.2014.03.003

    Article  CAS  Google Scholar 

  64. Rabensteiner, M., Kinger, G., Koller, M., Gronald, G., Unterberger, S., and Hochenauer, C., Int. J. Greenhouse Gas Control., 2014, vol. 29, pp. 1–15. https://doi.org/10.1016/j.ijggc.2014.07.011

    Article  CAS  Google Scholar 

  65. Shnaider, R., Kyuttel’, D., Kintsl’, M., Iokh, R., and Fisher, B.P., RF Patent 2638663, 2017.

  66. Furusho, Y. and Endo, T., Polymer Bull., 2017, vol. 74, pp. 1207–1219. https://doi.org/10.1007/s00289-016-1772-6

    Article  CAS  Google Scholar 

  67. Aoyagi, N. and Endo, T., Tetrahedron, 2017, vol. 73, no. 12, pp. 1529–1533. https://doi.org/10.1016/j.tet.2017.01.012

    Article  CAS  Google Scholar 

  68. Heldebrant, D.J., Jessop, P.G., Thomas, C.A., Eckert, C.A., and Liotta, C.L., J. Org. Chem., 2005, vol. 70, no. 13, pp. 5335–5343. https://doi.org/10.1021/jo0503759

    Article  CAS  PubMed  Google Scholar 

  69. Qi, Z. and Cussler, E.L., J. Membrane Sci., 1985, vol. 23, no. 3, pp. 321–322. https://doi.org/10.1016/S0376-7388(00)83149-X

    Article  CAS  Google Scholar 

  70. Qi, Z. and Cussler, E.L., J. Membrane Sci., 1985, vol. 23, no. 3, p. 333. https://doi.org/10.1016/S0376-7388(00)83149-X

    Article  CAS  Google Scholar 

  71. Chabanon, E., Kimball, E., Favre, E., Lorain, O., Goetheer, E., Ferre, D., Gomez, A., and Broutin, P., IFP Energ. Nouvelles, 2014, vol. 69, no. 6, pp. 1035–1045. https://doi.org/10.2516/ogst/2012046

    Article  Google Scholar 

  72. Zaidiza, D.A., Belaissaoui, B., Rode, S., and Favre, E., Separat. Purificat. Technol., 2017, vol. 188, pp. 38–51. https://doi.org/10.1016/j.seppur.2017.06.074

    Article  CAS  Google Scholar 

  73. Teramoto, M., Kitada, S., Ohnishi, N., Matsuyama, H., and Matsumiya, N., J. Membrane Sci., 2004, vol. 234, nos. 1–2, pp. 83–94. https://doi.org/10.1016/j.memsci.2003.12.023

    Article  CAS  Google Scholar 

  74. Fang, M., Wang, Z., Yana, S., Cen, Q., and Luo, Z., Int. J. Greenhouse Gas Control., 2012, vol. 9, pp. 507–521. https://doi.org/10.1016/j.ijggc.2012.05.013

    Article  CAS  Google Scholar 

  75. Okabe, K., Kodama, S., Mano, H., and Fujioka, Y., Energy Proced., 2009, vol. 1, pp. 1281–1288. https://doi.org/10.1016/j.egypro.2009.01.168

    Article  CAS  Google Scholar 

  76. Lv, P.P., Wang, F., Guo, Y.H., and Tang, H.Y., Key Eng. Mater., 2015, vol. 671, pp. 293–299. https://doi.org/10.4028/www.scientific.net/KEM.671.293

    Article  Google Scholar 

  77. Franco, J.A., Montigny, D., Kentisha, S.E., Perera, J.M., and Stevens, G.W., Chem. Eng. Sci., 2009, vol. 64, no. 18, pp. 4016–4023. https://doi.org/10.1016/j.ces.2009.06.012

    Article  CAS  Google Scholar 

  78. Okabe, K., Kodama, S., Mano, H., and Fujioka, Y., Energy Proced., 2009, vol. 1, pp. 1281–1288. https://doi.org/10.1016/j.egypro.2009.01.168

    Article  CAS  Google Scholar 

  79. Teramoto, M., Kitada, S., Ohnishi, N., Matsuyama, H., and Matsumiya, N., J. Membrane Sci., 2004, vol. 234, nos. 1–2, pp. 83–94. https://doi.org/10.1016/j.memsci.2003.12.023

    Article  CAS  Google Scholar 

  80. Teramoto, M., Ohnishi, N., Takeuchi, N., Kitada, S., Matsuyama, H., Matsumiya, N., and Mano, H., Separat. Purificat. Technol., 2003, vol. 30, no. 3, pp. 215–227. https://doi.org/10.1016/S1383-5866(02)00144-2

    Article  CAS  Google Scholar 

  81. Kianfar, E., Pirouzfar, V., and Sakhaeinia, H., J. Taiwan Inst. Chem. Eng., 2017, vol. 80, pp. 954–962. https://doi.org/10.1016/j.jtice.2017.08.017

    Article  CAS  Google Scholar 

  82. Koonaphapdeelert, S., Wu, Z., and Li, K., Chem. Eng. Sci., 2009, vol. 64, no. 1, pp. 1–8. https://doi.org/10.1016/j.ces.2008.09.010

    Article  CAS  Google Scholar 

  83. Koonaphapdeelert, S. and Li, K., J. Membrane Sci., 2007, vol. 291, nos. 1–2, pp. 70–76. https://doi.org/10.1016/j.memsci.2006.12.039

    Article  CAS  Google Scholar 

  84. Koonaphapdeelert, S., Tan, X., Wu, Z., and Li, K., J. Membrane Sci., 2008, vol. 314, nos. 1–2, pp. 58–66. https://doi.org/10.1016/j.memsci.2008.01.022

    Article  CAS  Google Scholar 

  85. Takahashi, N., Matsuzaki, K., Funai, T., Wada, T., Fukunaga, H., Takatsuka, T., and Mano, H., Energy Proced., 2013, vol. 37, pp. 1060–1066. https://doi.org/10.1016/j.egypro.2013.05.202

    Article  CAS  Google Scholar 

  86. Guo, Y., Energy Fuels, 2015, vol. 30, pp. 492–503. https://doi.org/10.1021/acs.energyfuels.5b01789

    Article  CAS  Google Scholar 

  87. Novitskii, E.G., Vasilevskii, V.P., Vasil’eva, V.I., Goleva, E.A., Grushevenko, E.A., and Volkov, A.V., Russ. J. Appl. Chem., 2018, vol. 91, no. 5, pp. 813–821. https://doi.org/10.1134/S1070427218050129

    Article  CAS  Google Scholar 

  88. Mel’nikov, E.Ya., Spravochnik azotchika (Working with Nitrogen Handbook), Moscow: Khimiya, 1986.

Download references

Funding

This work was carried out within the State Program of TIPS RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Novitskii.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 3, pp. 291–310 https://doi.org/10.31857/S0028242121030011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novitskii, E.G., Bazhenov, S.D. & Volkov, A.V. Optimization of Methods for Purification of Gas Mixtures to Remove Carbon Dioxide (A Review). Pet. Chem. 61, 407–423 (2021). https://doi.org/10.1134/S096554412105011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S096554412105011X

Keywords:

Navigation