Skip to main content
Log in

Regeneration of a Porous Iron-Containing Carbon Adsorbent under Plasma-Catalytic Conditions Assisted by Microwave Irradiation

Petroleum Chemistry Aims and scope Submit manuscript

Abstract

This article reports experimental data on a double-step technology for processing a model organic contaminant (m-cresol) adsorbed in the pores of an iron-containing carbon adsorbent (specific surface area 616 m2/g) under microwave irradiation. The first step comprised the decomposition of cresol into a hydrogen-containing gas and a carbon residue under plasma-catalytic conditions assisted by microwave irradiation at an induced temperature of 600°C. Cresol was completely converted after 25 min of the MW irradiation. The second step consisted of adsorbent regeneration (by CO2 treatment under MW irradiation to remove the carbon residue) followed by thermal shock treatment (by decomposition of a pre-adsorbed ammonium hydroxide). After the regeneration, the specific surface area was 500 m2/g. The regenerated adsorbent exhibited almost the same cresol adsorption capacity as the starting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Kuznetsov, B.N., Chesnokov, N.V., Ivanov, I.P., Veprikova, E.V., and Ivanchenko, N.M., J. Sib. Federal. Univ.: Chemistry, 2015, vol. 2, no. 8, pp. 232–255. https://doi.org/10.17516/1998-2836-2015-8-2-232-255

    Article  Google Scholar 

  2. Kuznetsov, B.N., Chesnokov, N.V., Ivanov, I.P., Veprikova, E.V., and Ivanchenko, N.M., Solid Fuel Chem., 2016, vol. 50, no. 1, pp. 23–30. https://doi.org/10.3103/S0361521916010067

    Article  CAS  Google Scholar 

  3. Nikolaev, V.G. and Strelko, V.V., Gemosorbtsiya na aktivnykh uglyakh (Hemosorption on Activated Carbons), Kiev: Naukova Dumka, 1979.

  4. Haq, I., Mazumder, P., and Kalamdhad, A.S., Biores. Technol., 2020, pp. 123636–123647. https://doi.org/10.1016/j.biortech.2020.123636

  5. Rabinovich, M.L., Fedoryak, O., Dobele, G., Andersone, A., Gawdzik, B., Lindström, M.E., and Sevastyanova, O., Ren. Sustain. Energy Rev., 2016, vol. 57, pp. 1008–1024. https://doi.org/10.1016/j.rser.2015.12.206

    Article  CAS  Google Scholar 

  6. Munoz, M., Nieto-Sandoval, J., Álvarez-Torrellas, S., Sanz-Santos, E., Calderón, B., de Pedro, Z.M., and Casas, J.A., Separat. Purificat. Technol., 2020, vol. 257, pp. 11797–11780. https://doi.org/10.1016/j.seppur.2020.117974

    Article  CAS  Google Scholar 

  7. Duan, C., Ma, T., Wang, J., and Zhou, Y., J. Water Process Eng., 2020, vol. 37, pp. 101339–101351. https://doi.org/10.1016/j.jwpe.2020.101339

    Article  Google Scholar 

  8. Zhao, W., Tian, Y., Chu, X., Cui, L., Zhang, H., Li, M., and Zhao, P., Separat. Purificat. Technol., 2020, vol. 257, pp. 117917–117925. https://doi.org/10.1016/j.seppur.2020.117917

    Article  CAS  Google Scholar 

  9. Quesada, H.B., de Araújo, T.P., Vareschini, D.T., de Barros, M.A.S.D., Gomes, R.G., and Bergamasco, R., Int. J. Biol. Macromol., 2020, vol. 164, pp. 2535–2549. https://doi.org/10.1016/j.ijbiomac.2020.08.118

    Article  CAS  PubMed  Google Scholar 

  10. Chistyakov, A.V., Tsodikov, M.V., Buhtenko, O.V., and Nikolaev, S.A., RF Patent 2724252, 2020.

  11. Tsodikov, M.V., Nikolaev, S.A., Chistyakov, A.V., Bukhtenko, O.V., and Fomkin, A.A., Мicropor. Мesopor. Mater., 2020, vol. 298, pp. 110089–110096. https://doi.org/10.1016/j.micromeso.2020.110089

    Article  CAS  Google Scholar 

  12. Bondarenko, G.N., Kolbeshin, A.S., Liberman, E.Yu., Chistyakov, A.V., Pasevin, V.I., and Tsodikov, M.V., Petrol. Chem., 2021, vol. 61, no. 1, pp. 81–87. https://doi.org/10.1134/S0965544121010096

    Article  CAS  Google Scholar 

  13. Hillebrand, V.F. , Lendel’, G.E., Brait, G.A., and Hofman, D.I., Prakticheskoe rukovodstvo po neorganicheskomu analizu (Practical Guide to Inorganic Analysis), Moscow: Khimiya, 1966.

  14. Tsodikov, M.V., Ellert, O.G., Nikolaev, S.A., Arapova, O.V., Bukhtenko, O.V., Maksimov, Yu.V., Kirdyankin, D.I., and Vasil’kov, A.Yu., J. Nanoparticle Res., 2018, vol. 20, no. 3, pp. 86–101. https://doi.org/10.1007/s11051-018-4185-7

    Article  CAS  Google Scholar 

  15. Tsodikov, M.V., Ellert, O.G., Arapova, O.V., Nikolaev, S.A., Chistyakov, A.V., and Maksimov, Yu.V., Chem. Eng. Transac., 2018, vol. 65, pp. 367–372. https://doi.org/10.3303/CET1865062

    Article  Google Scholar 

  16. Zharova, P.A., Arapova, O.V., Konstantinov, G.I., Chistyakov, A.V., and Tsodikov, M.V., J. Chem., 2019, vol. 2019, pp. 1–9. https://doi.org/10.1155/2019/6480354

    Article  CAS  Google Scholar 

  17. Dubinin, M.M. and Plavnik, G.M., Carbon, 1968, vol. 6, pp. 183–192. https://doi.org/10.1016/0008-6223(68)90302-3

    Article  CAS  Google Scholar 

  18. Feldman, L.C. and Mayer, J.W. Fundamentals of Surface and Thin Film Analysis, Amsterdam: Elsevier Science, 1986.

  19. Tsodikov, M.V., Konstantinov, G.I., Chistyakov, A.V., Arapova, O.V., and Perederii, M.A., Chem. Eng. J., 2016, vol. 292, pp. 315–320. https://doi.org/10.1016/j.cej.2016.02.028

    Article  CAS  Google Scholar 

  20. Nikolaev, S.A., Maksimov, Yu.V., Bukhtenko, O.V., Pasevin, V.I., and Tsodikov, M.V., Petrol. Chem., 2021, vol. 61, no. 1, pp. 88–91. https://doi.org/10.1134/S0965544121010102

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using equipment of Center for Collective Use “TIPS RAS Analytical center of deep oil processing and petrochemistry.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Chistyakov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 3, pp. 397–404 https://doi.org/10.31857/S0028242121030114.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chistyakov, A.V., Liberman, E.Y., Pasevin, V.I. et al. Regeneration of a Porous Iron-Containing Carbon Adsorbent under Plasma-Catalytic Conditions Assisted by Microwave Irradiation. Pet. Chem. 61, 498–503 (2021). https://doi.org/10.1134/S0965544121050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121050078

Keywords:

Navigation