Skip to main content
Log in

TGA-Based Thermokinetics of High-Viscosity Oil Decomposition in the Presence of Nanocatalysts, Catalytic Additives, and Polymers

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper provides experimentally determined thermokinetics of the thermal decomposition of high-viscosity oil (HVO) from the Karazhanbas field, the Republic of Kazakhstan, in the presence of a Fe3O4 nanocatalyst, catalytic additives (nickel catalytic additives in microspheres prepared from coal ash), and polymers (such as polyethylene glycol and polystyrene) as hydrogen donors. The HVO decomposition thermokinetics (activation energy, pre-exponential factor, and rate constants), depending on the presence of nanocatalysts, catalytic additives, and/or polymers, were estimated by thermogravimetry methods in an inert nitrogen atmosphere. The experimental data (including HVO weight loss and weight loss rate vs. temperature) and the estimated thermokinetics of HVO decomposition can be used to create a database appropriate for mathematical modeling of the processing of HVO and heavy oil residues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ali, M.F., Siddiqui, M.N., and Redhwi, H.H., J. Mater. Cycles Waste Manag., 2004, vol. 6, no. 1, pp. 2734. https://doi.org/10.1007/s10163-003-0102-x

    Article  CAS  Google Scholar 

  2. Siddiqui, M.N. and Redhwi, H.H., J. Anal. Appl. Pyrolysis., 2009, vol. 86, no. 1, pp. 141–147. https://doi.org/10.1016/j.jaap.2009.05.002

    Article  CAS  Google Scholar 

  3. Ali, M.F. and Qureshi, M.S., Petrol. Sci. Technol., 2013, vol. 31, no. 16, pp. 1655–1673. https://doi.org/10.1080/10916466.2010.551239

    Article  CAS  Google Scholar 

  4. Ali, M.F. and Siddiqui, M.D., J. Anal. Appl. Pyrol., 2005, vol. 74, nos. 1–2, pp. 282–289. https://doi.org/10.1016/j.jaap.2004.12.010

    Article  CAS  Google Scholar 

  5. Ahmaruzzaman, M. and Sharma, D.K., Energy Fuels, 2006, vol. 20, no. 6, pp. 2498–2503. https://doi.org/10.1021/ef060070c

    Article  CAS  Google Scholar 

  6. Kadiev, H.M., Dandaev, A.U., Guul’maliev, A.M., Batov, A.E., and Khadzhiev, S.N., Khim. Tverd. Topliva, 2013, no. 2, pp. 65–72. https://doi.org/10.7868/S0023117713020059

    Article  Google Scholar 

  7. Gringolts, M.L., Dement’ev, K.I., Kadiev, H.M., Maksimov, A.L., and Finkel’shtein, E.Sh., Petrol. Chem., 2020, no. 4, pp. 751–761. https://doi.org/10.31857/S002824212004005X

    Article  Google Scholar 

  8. Yizhao, L., Fengyun, M., Xintai, S., Chao, S., Jian-chao, L., Zhiqiang, S., and Yanglong, H., Catal. Commun., 2012, no. 26, pp. 231–234. https://doi.org/10.1016/j.catcom.2012.06.002

    Article  CAS  Google Scholar 

  9. Zimon, A.D., Liquid Adhesion and Wetting, Moscow: Khimiya, 1974.

  10. Kopytov, M.A., Golovko, A.K., Kirik, N.P., and Anshits, A.G., Petrol. Chem., 2013, vol. 53, no. 1, pp. 14–19. https://doi.org/10.1134/S0965544113010076

    Article  CAS  Google Scholar 

  11. Aitbekova, D.E., Ma, F.J., Meiramov, M.G., Baikenova, G.G., Kumakov, F.E., Tusipkhan, A., Mukhametzhanova, S.K., and Baikenov, M.I., Khim. Tverd. Topliva, 2019, vol. 53, no. 4, pp. 46–55. https://doi.org/10.1134/S0023117719040029

    Article  Google Scholar 

  12. Kuznetsov, B.N., Glubokaya pererabotka burykh uglei s polucheniem zhidkikh topliv i uglerodnykh materialov (Deep Processing of Brown Coal to Obtain Liquid Fuels and Carbon Materials), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2012.

  13. Dominguez, A., Blanco, C.G., and Barriocanal, C., J. Chromatograph. A, 2001, vol. 918, no. 1, pp. 135–144. https://doi.org/10.1016/S0021-9673(01)00736-1

    Article  CAS  Google Scholar 

  14. Fettes, E.M., Chemical Reactions of Polymers, New York: John Wiley and Sons, 1964.

  15. Totten, G.E. and Clinton, N.A., Macromol. Chem. Phys., 1988, vol. 28, no. 2, pp. 293–337. https://doi.org/10.1080/15583728808085378

    Article  Google Scholar 

  16. Ji, C., Scott, K.S., Jonathan, G.H., and Robin, D.R., Green Chem., 2005, no. 7, pp. 64–82. https://doi.org/10.1039/B413546F

    Article  Google Scholar 

  17. Pereira, J.F., Kurnia, K.A., Freire, M.G., Coutinho, J.A., and Rogers, R.D., ChemPhysChem., 2015, vol. 16, no. 10, pp. 2219–2225. https://doi.org/10.1002/cphc.201500146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gyul’maliev, A.M., Golovin, G.S., and Gladun, T.G., Teoreticheskie osnovy khimii uglya (Theoretical Foundations of Coal Chemistry), Moscow: Mosk. Gos. Univ., 2003.

  19. Papkov, V.S. and Slonimskii, G.L., Vysokomol. Soedin., 1966, vol. 8, no. 1, pp. 80–87.

    CAS  Google Scholar 

  20. Bukvareva, O.F., Buharkina, T.V., Kinetika i termokhimiya protsessov termodestruktsii uglerodsoderzhashchikh veshchestv (Kinetics and Thermochemistry of the Processes of Thermal Destruction of Carbon-Containing Substances), Moscow: RHTU im. D.I. Mendeleeva, 2001.

  21. Lyrshchikov, S.Y., Strizhak, P.A., and Shevyrev, S.A., Coke Chem., 2016, vol. 59, no. 7, pp. 264–270. https://doi.org/10.3103/S1068364X16070048

    Article  Google Scholar 

  22. Strizhakov, D.A., Yusevich, A.I., Yurachka, V.V., Kadiev, H.M., Agabekov, V.E., and Khadzhiev, S.N., Petrol. Chem., 2016, vol. 56, no. 8, pp. 703–710. https://doi.org/10.1134/S0965544116080168

    Article  CAS  Google Scholar 

Download references

Funding

The work was carried out as part of the Research Program “Thermochemical processing of heavy oil residues mixed with low-temperature coal tar in the atmosphere of coke gas” with financial support from the Ministry of Education and Science of the Republic of Kazakhstan (grant inv. no. 0215RK969).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. E. Aitbekova or M. I. Baikenov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 3, pp. 319–327 https://doi.org/10.31857/S0028242121030035.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yedrissov, A.T., Aitbekova, D.E., Tusipkhan, A. et al. TGA-Based Thermokinetics of High-Viscosity Oil Decomposition in the Presence of Nanocatalysts, Catalytic Additives, and Polymers. Pet. Chem. 61, 431–437 (2021). https://doi.org/10.1134/S0965544121050157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121050157

Keywords:

Navigation