Skip to main content

Advertisement

Log in

Modeling in High Temperature Corrosion: A Review and Outlook

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Realizing higher operating temperatures to increase efficiency of future applications for energy conversion and storage while minimizing cost is a challenge for development of high-temperature materials. Simultaneous optimization of mechanical properties and corrosion resistance continues to be a difficult task but is essential due to the need to significantly accelerate the transition between technology readiness levels in the future. Oxidation-induced degradation will be a critical life-limiting mechanism at increased operating temperatures. Suitable high-temperature materials cannot be solely identified by time-consuming experiments and reliable computational methods incorporating the relevant physics of processes must be considered to complement the experimental efforts. In the present work, a review of the methods employed to model oxidation-induced material degradation described in literature will be discussed. Furthermore, their capability to predict lifetime and aid in material selection will be evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A. Fraas, Heat Exchanger Design, (Wiley, 1989).

    Google Scholar 

  2. G. Lai, High Temperature Corrosion and Materials Applications (ASM International, 2007).

  3. J. Wheeldon and J. Shingledecker, Materials for Boilers Operating Under Supercritical Steam Conditions (Woodhead Publ. Ser. En., 2013).

  4. P. Ennis, W. Quadakkers, and H. Schuster, Materials Science and Technology, 8 78 (1992).

    Article  CAS  Google Scholar 

  5. V. Guttmann and J. Mariott, Environmental Degradation of High Temperature Materials (The Institution of Metallurgists, London, 1980).

    Google Scholar 

  6. V. Guttmann and M. Schütze, High Temperature Alloys for Gas Turbines and Other Applications (Springer, Dordrecht, 1986).

    Google Scholar 

  7. W. J. Quadakkers, Werkstoffe und Korrosion 41, 659 (1990).

    Article  CAS  Google Scholar 

  8. P. Huczkowski, N. Christiansen, V. Shemet, J. Piron-Abellan, L. Singheiser, and W. J. Quadakkers, Journal of Fuel Cell Science and Technology 1, 30 (2004). https://doi.org/10.1115/1.1782925.

    Article  CAS  Google Scholar 

  9. C. S. Giggins, and F. S. Pettit, Journal of the Electrochemical Society 118, 1782 (1971).

    Article  CAS  Google Scholar 

  10. T. J. Nijdam, N. M. van der Pers, and W. G. Sloof, Materials and Corrosion 57, 269 (2006). https://doi.org/10.1002/maco.200503934.

    Article  CAS  Google Scholar 

  11. W. J. Quadakkers and K. Bongartz, Werkstoffe und Korrosion 45, 232 (1994).

    Article  CAS  Google Scholar 

  12. C. Wagner, Journal of the Electrochemical Society 99, 369 (1952).

    Article  CAS  Google Scholar 

  13. G. C. Wood and D. P. Whittle, Corrosion Science 7, 763 (1967).

    Article  CAS  Google Scholar 

  14. H. E. Evans and R. C. Lobb, Corrosion Science 24, 209 (1984). https://doi.org/10.1016/0010-938x(84)90051-9.

    Article  CAS  Google Scholar 

  15. M. Schütze, Oxidation of Metals 24, 199 (1985). https://doi.org/10.1007/BF00664232.

    Article  Google Scholar 

  16. P. Hancock and J. R. Nicholls, Materials Science and Technology 4, 398 (1988). https://doi.org/10.1179/mst.1988.4.5.398.

    Article  CAS  Google Scholar 

  17. P. Hancock and J. R. Nicholls, Materials at High Temperatures 12, 209 (1994). https://doi.org/10.1080/09603409.1994.11689488.

    Article  CAS  Google Scholar 

  18. H. E. Evans, International Materials Reviews 40, 1 (1995).

    Article  CAS  Google Scholar 

  19. I. G. Wright, B. A. Pint, L. M. Hall, and P. F. Tortorelli, Lifetime Modelling of High Temperature Corrosion Processes 34, 339 (2001).

  20. I. G. Wright, M. Schutze, P. F. Tortorelli, and R. B. Dooley, Materials at High Temperatures 24, 265 (2007). https://doi.org/10.3184/096034007x277933.

    Article  CAS  Google Scholar 

  21. S. Osgerby, K. Berriche-Bouhanek, and H. E. Evans, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 412, 182 (2005). https://doi.org/10.1016/j.msea.2005.08.193.

    Article  CAS  Google Scholar 

  22. C. Tedmon, Journal of the Electrochemical Society 113, 3 (1966).

    Article  Google Scholar 

  23. H. Astemann, J. Svensson, and L. Johansson, Oxidation of Metals 57, 193 (2002).

    Article  Google Scholar 

  24. A. Yamauchi, K. Kurokawa, and H. Takahashi, Oxidation of Metals 59,  517 (2003). https://doi.org/10.1023/A:1023671206976.

  25. E. J. Opila, D. L. Myers, N. S. Jacobson, I. M. B. Nielsen, D. F. Johnson, J. K. Olminsky, and M. D. Allendorf, Journal of Physical Chemistry A 111, 1971 (2007). https://doi.org/10.1021/jp0647380.

    Article  CAS  Google Scholar 

  26. W. W. Smeltzer and D. P. Whittle, Journal of the Electrochemical Society 125, 1116 (1978).

    Article  CAS  Google Scholar 

  27. F. H. Stott, G. C. Wood, Y. Shida, D. P. Whittle, and B. D. Bastow, Corrosion Science 21, 599 (1981). https://doi.org/10.1016/0010-938x(81)90011-1.

    Article  CAS  Google Scholar 

  28. D. P. Whittle, F. Gesmundo, B. D. Bastow, and G. C. Wood, Oxidation of Metals 16, 159 (1981). https://doi.org/10.1007/bf00603750.

    Article  CAS  Google Scholar 

  29. D. L. Douglass, Oxidation of Metals 44, 81 (1995). https://doi.org/10.1007/Bf01046724.

    Article  CAS  Google Scholar 

  30. D. J. Young, Materials Science Forum 696, 1 (2011). https://doi.org/10.4028/www.scientific.net/MSF.696.1.

    Article  CAS  Google Scholar 

  31. A. Schnaas and H. J. Grabke, Oxidation of Metals 12, 387 (1978). https://doi.org/10.1007/Bf00612086.

    Article  CAS  Google Scholar 

  32. H. J. Grabke and I. Wolf, Materials Science and Engineering 87, 23 (1987). https://doi.org/10.1016/0025-5416(87)90357-0.

    Article  CAS  Google Scholar 

  33. D. R. G. Mitchell, D. J. Young, Journal of Materials Science Letters 12, 1076 (1993). https://doi.org/10.1007/bf00420526.

  34. R. E. Lobnig and H. J. Grabke, Corrosion Science 30, 1045 (1990). https://doi.org/10.1016/0010-938x(90)90211-m.

    Article  CAS  Google Scholar 

  35. D. J. Young and S. Watson, Oxidation of Metals 44, 239 (1995). https://doi.org/10.1007/Bf01046729.

    Article  CAS  Google Scholar 

  36. W. T. Bakker, Oxidation of Metals 45, 487 (1996). https://doi.org/10.1007/Bf01046848.

  37. G. R. Blair, H. Levin, and R. E. Obrien, Journal of the American Ceramic Society 48, 430 (1965).

    Article  CAS  Google Scholar 

  38. J. J. Barnes and G. Y. Lai, Journal of Metals 40, 104 (1988).

    Google Scholar 

  39. J. J. Barnes and G. Y. Lai, Journal De Physique Iv 3, 167 (1993). https://doi.org/10.1051/jp4:1993915.

    Article  CAS  Google Scholar 

  40. R. Durham, B. Gleeson, and D. Young, Oxidation of Metals 50, 139 (1998).

    Article  CAS  Google Scholar 

  41. R. Petkovic-Lutton and T. Ramanarayan, Oxidation of Metals 34, 381 (1990).

    Article  Google Scholar 

  42. P. Huczkowski, S. Ertl, J. Piron-Abellan, N. Christiansen, T. Hoefler, V. Shemet, L. Singheiser, and W. Quadakkers, Materials at High Temperatures 22, 253 (2005).

    Article  CAS  Google Scholar 

  43. W. J. Quadakkers and M. J. Bennett, Materials Science and Technology 10, 126 (1994).

    Article  CAS  Google Scholar 

  44. R. C. John, A. D. Pelton, A. L. Young, W. T. Thompson, and I. G. Wright, Lifetime Modelling of High Temperature Corrosion Processes 34, 398 (2001).

  45. R. C. John, A. D. Pelton, A. L. Young, W. T. Thompson, and I. G. Wright, Materials Science Forum 461464, 599 (2004). https://doi.org/10.4028/www.scientific.net/MSF.461-464.599.

  46. F. N. Rhines, W. A. Johnson, and W. A. Anderson, Transactions of the American Institute of Mining and Metallurgical Engineers 147, 205 (1942).

    Google Scholar 

  47. J. L. Meijering and M. J. Druyvesteyn, Philips Research Reports 2, 260 (1947).

    CAS  Google Scholar 

  48. J. W. Martin and G. C. Smith, Journal of the Institute of Metals 83, 417 (1955).

    CAS  Google Scholar 

  49. C. Wagner, Zeitschrift für Elektrochemie 63, 772 (1959).

    CAS  Google Scholar 

  50. R. A. Rapp, Corrosion 21, 382 (1965).

    Article  CAS  Google Scholar 

  51. R. A. Rapp, Acta Metallurgica 9, 730 (1961).

    Article  CAS  Google Scholar 

  52. F. Maak, Zeitschrift Fur Metallkunde 52, 545 (1961).

    CAS  Google Scholar 

  53. G. Zimbitas and W. G. Sloof, Materials Science Forum 696, 82 (2011). https://doi.org/10.4028/www.scientific.net/MSF.696.82.

    Article  CAS  Google Scholar 

  54. F. H. Stott, G. C. Wood, D. P. Whittle, B. D. Bastow, Y. Shida, and A. Martinezvillafane, Solid State Ionics 12, 365 (1984). https://doi.org/10.1016/0167-2738(84)90166-8.

    Article  CAS  Google Scholar 

  55. S. W. Guan, H. C. Yi and W. W. Smeltzer, Oxidation of Metals 41, 377 (1994). https://doi.org/10.1007/bf01113372.

    Article  CAS  Google Scholar 

  56. S. W. Guan, H. C. Yi and W. W. Smeltzer, Oxidation of Metals 41, 389 (1994). https://doi.org/10.1007/bf01113373.

    Article  CAS  Google Scholar 

  57. F. Gesmundo and Y. Niu, Oxidation of Metals 60, 347 (2003). https://doi.org/10.1023/A:1027398104508.

    Article  CAS  Google Scholar 

  58. Y. Niu and F. Gesmundo, Oxidation of Metals 60, 371 (2003). https://doi.org/10.1023/A:1027379521347.

    Article  CAS  Google Scholar 

  59. H. M. Hindam and W. W. Smeltzer, Journal of the Electrochemical Society 127, 1622 (1980). https://doi.org/10.1149/1.2129964.

    Article  CAS  Google Scholar 

  60. H. Hindam and D. P. Whittle, Journal of Materials Science 18, 1389 (1983). https://doi.org/10.1007/bf01111959.

    Article  CAS  Google Scholar 

  61. D. P. Whittle, Y. Shida, G. C. Wood, F. H. Stott, and B. D. Bastow, Philosophical Magazine A 46, 931 (1982).

    Article  CAS  Google Scholar 

  62. F. H. Stott, Y. Shida, D. P. Whittle, G. C. Wood, and B. D. Bastow, Oxidation of Metals 18, 127 (1982).

  63. G. R. Laflamme and J. E. Morral, Acta Metallurgica 26, 1791 (1978). https://doi.org/10.1016/0001-6160(78)90091-3.

    Article  CAS  Google Scholar 

  64. E. K. Ohriner and J. E. Morral, Scripta Metallurgica 13, 7 (1979). https://doi.org/10.1016/0036-9748(79)90379-X.

    Article  CAS  Google Scholar 

  65. D. Huin, P. Flauder, and J.-B. Leblond, Oxidation of Metals 64, 131 (2005). https://doi.org/10.1007/s11085-005-5718-x.

    Article  CAS  Google Scholar 

  66. G. Böhm and M. Kahlweit, Acta Metallurgica 12, 641 (1964).

    Article  Google Scholar 

  67. P. Bolsaitis and M. Kahlweit, Acta Metallurgica 15, 765 (1967). https://doi.org/10.1016/0001-6160(67)90357-4.

    Article  CAS  Google Scholar 

  68. M. Kahlweit, Zeitschrift für Physikalische Chemie, 32, 1 (1962). https://doi.org/10.1524/zpch.1962.32.1_2.001.

  69. F. Gesmundo, P. Castello, F. Viani, and C. Roos, Oxidation of Metals 49, 237 (1998). https://doi.org/10.1023/a:1018834525388.

    Article  CAS  Google Scholar 

  70. C. Wagner, Corrosion Science 9, 91 (1969). https://doi.org/10.1016/S0010-938x(69)80046-6.

    Article  CAS  Google Scholar 

  71. D. Coates and A. Dalvi, Oxidation of Metals 2, 331 (1970). https://doi.org/10.1023/A:1018895628849.

    Article  CAS  Google Scholar 

  72. T. Narita, K. Nishida, and W. Smeltzer, Journal of Electrochemical Society 129, 209 (1982).

    Article  CAS  Google Scholar 

  73. R. Dieckmann, Zeitschrift Fur Physikalische Chemie-Frankfurt 107, 189 (1977). https://doi.org/10.1524/zpch.1977.107.2.189.

    Article  CAS  Google Scholar 

  74. S. Hallström, M. Halvarsson, L. Hoglund, T. Jonsson, and J. Agren, Solid State Ionics 240, 41 (2013). https://doi.org/10.1016/j.ssi.2013.02.017.

    Article  CAS  Google Scholar 

  75. H. Larsson, T. Jonsson, R. Naraghi, Y. Gong, R. C. Reed, and J. Agren, Materials and Corrosion-Werkstoffe Und Korrosion 68, 133 (2017). https://doi.org/10.1002/maco.201508781.

    Article  CAS  Google Scholar 

  76. H. Larsson and A. Engström, Acta Materialia 54, 2431 (2006).

    Article  CAS  Google Scholar 

  77. P. Kofstad, High Temperature Oxidation (Elsevier Applied Science, London, 1988).

    Google Scholar 

  78. Thermo-Calc, MOBNI3, TCS Ni-alloys Mobility Database (2014).

  79. D. Jullian, J. Q. Zhang, D. B. Hibbert, and D. J. Young, Journal of Alloys and Compounds 732, 646 (2018). https://doi.org/10.1016/j.jallcom.2017.10.226.

    Article  CAS  Google Scholar 

  80. W. Zhao, Y. H. Kang, J. M. A. Orozco, and B. Gleeson, Oxidation of Metals 83, 187 (2015). https://doi.org/10.1007/s11085-014-9516-1.

    Article  CAS  Google Scholar 

  81. G. Tammann, Zeitschrift fur Anorganische und Allgemeine Chemie 111, 78 (1920).

    Article  Google Scholar 

  82. N. B. Pilling and R. E. Bedworth, Journal of the Institute of Metals 29, 529 (1923).

    Google Scholar 

  83. E. W. Haycock, Journal of the Electrochemical Society 106, 771 (1959). https://doi.org/10.1149/1.2427495.

    Article  CAS  Google Scholar 

  84. D. Wajszel, Journal of the Electrochemical Society 110, 504 (1963). https://doi.org/10.1149/1.2425801.

    Article  CAS  Google Scholar 

  85. C. A. Barrett and A. Presler, in COREST: A FORTRAN Computer Program to Analyze Paralinear Oxidation Behavior and Its Application to Chromic Oxide Forming Alloys, Report NASA-TN-D-8132, E-8432 (NASA Lewis Research Center; Cleveland, OH, United States, 1976).

    Google Scholar 

  86. D. J. Young and B. A. Pint, Oxidation of Metals 66, 137 (2006). https://doi.org/10.1007/s11085-006-9030-1.

    Article  CAS  Google Scholar 

  87. D. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, Oxford, 2008).

    Google Scholar 

  88. G. Holcomb, Oxidation of Metals 69, 163 (2008).

    Article  CAS  Google Scholar 

  89. B. B. Ebbinghaus, Combustion and Flame 93, 119 (1993). https://doi.org/10.1016/0010-2180(93)90087-J.

    Article  CAS  Google Scholar 

  90. C. Gindorf, L. Singheiser, and K. Hilpert, Steel Research 72, 528 (2001).

    Article  CAS  Google Scholar 

  91. J. Armitt, D. R. Holmes, M. I. Manning, D. Meadowcroft, and E. Metcalfe, EPRI Report FP 686, (1978).

  92. M. Schutze, P. F. Tortorelli, and I. G. Wright, Oxidation of Metals 73, 389 (2010). https://doi.org/10.1007/s11085-009-9185-7.

    Article  CAS  Google Scholar 

  93. C. E. Lowell, C. A. Barrett, R. W. Palmer, J. V. Auping, and H. B. Probst, Oxidation of Metals 36, 81 (1991).

    Article  CAS  Google Scholar 

  94. J. L. Smialek, Acta Materialia 51, 469 (2003). https://doi.org/10.1016/s1359-6454(02)00430-5.

    Article  CAS  Google Scholar 

  95. D. Poquillon and D. Monceau, Oxidation of Metals 59, 409 (2003). https://doi.org/10.1023/A:1023004430423.

    Article  CAS  Google Scholar 

  96. R. Duan, A. Jalowicka, K. Unocic, B. A. Pint, P. Huczkowski, A. Chyrkin, D. Grüner, R. Pillai, and W. J. Quadakkers, Oxidation of Metals 87, 11 (2017). https://doi.org/10.1007/s11085-016-9653-9.

    Article  CAS  Google Scholar 

  97. H. E. Evans, A. T. Donaldson, and T. C. Gilmour, Oxidation of Metals 52, 379 (1999).

    Article  CAS  Google Scholar 

  98. A. Chyrkin, R. Pillai, H. Ackermann, H. Hattendorf, S. Richter, W. Nowak, D. Grüner, and W. Quadakkers, Corrosion Science 96, 32 (2015).

    Article  CAS  Google Scholar 

  99. D. P. Whittle, Corrosion Science 12, 869 (1972).

    Article  CAS  Google Scholar 

  100. H. Cowen and S. Webster, Corrosion of steels in CO2, Brit. Nuclear Energy Soc., 349 (1974).

  101. D. Whittle, D. Evans, D. Scully, and G. Wood, Acta Metallurgica 15, 1421 (1967).

    Article  CAS  Google Scholar 

  102. B. D. Bastow, D. P. Whittle, and G. C. Wood, Oxidation of Metals 12, 413 (1978).

    Article  CAS  Google Scholar 

  103. J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1956).

    Google Scholar 

  104. J. A. Nesbitt, Journal of the Electrochemical Society 136, 1511 (1989).

    Article  CAS  Google Scholar 

  105. J. A. Nesbitt, Journal of the Electrochemical Society 136, 1518 (1989).

    Article  CAS  Google Scholar 

  106. J. A. Nesbitt, Oxidation of Metals 44, 309 (1995).

    Article  CAS  Google Scholar 

  107. J. Ägren, Journal of Physics and Chemistry of Solids 43, 385 (1982).

    Article  Google Scholar 

  108. J. A. Nesbitt and R. W. Heckel, Journal of Metals 35, A40 (1982).

    Google Scholar 

  109. J. A. Nesbitt and R. W. Heckel, Oxidation of Metals 29, 75 (1988).

    Article  CAS  Google Scholar 

  110. R. Pillai, H. Ackermann, H. Hattendorf, and S. Richter, Corrosion Science 75, 28 (2013).

    Article  CAS  Google Scholar 

  111. D. Whittle, G. Wood, D. Evans, and D. Scully, Acta Metallurgica 15, 1747 (1967).

    Article  CAS  Google Scholar 

  112. G. L. Wulf, M. B. McGirr, and G. R. Wallwork, Corrosion Science 9, 739 (1969).

    Article  CAS  Google Scholar 

  113. D. P. Whittle, Oxidation of Metals 4, 171 (1972).

    Article  CAS  Google Scholar 

  114. G. Wahl, Thin Solid Films 107, 417 (1983). https://doi.org/10.1016/0040-6090(83)90303-6.

    Article  CAS  Google Scholar 

  115. J. Nesbitt and R. Heckel, Metallurgical Transactions A 18A, 2087 (1987).

    Article  CAS  Google Scholar 

  116. H. E. Evans and A. T. Donaldson, Oxidation of Metals 50, 457 (1998).

    Article  CAS  Google Scholar 

  117. A. Chyrkin, P. Huczkowski, V. Shemet, L. Singheiser, and J. Quadakkers, Oxidation of Metals 75, 143 (2011).

    Article  CAS  Google Scholar 

  118. R. Pillai, H. Ackermann, and K. Lucka, Corrosion Science 69, 181 (2013).

    Article  CAS  Google Scholar 

  119. B. Li and B. Gleeson, Oxidation of Metals 65, 101 (2006). https://doi.org/10.1007/s11085-016-9653-9.

    Article  CAS  Google Scholar 

  120. B. Jansson, M. Schalin, M. Selleby, and B. Sundman, Computer Software in Chemical and Extractive Metallurgy 57 (1993).

  121. A. Engström, L. Höglund, and J. Ägren, Metallurgical and Materials Transactions A 25A, 1127 (1994).

    Article  Google Scholar 

  122. A. Borgenstam, A. Engström, L. Höglund, and J. Ägren, Journal of Phase Equilibria 21, 269 (2000).

    Article  CAS  Google Scholar 

  123. T. Nijdam and W. Sloof, Acta Materialia 56, 4972 (2008).

    Article  CAS  Google Scholar 

  124. H. Larsson and L. Höglund, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 32, 495 (2009).

    Article  CAS  Google Scholar 

  125. H. Larsson, H. Strandlund, and M. Hillert, Acta Materialia 54, 945 (2006).

    Article  CAS  Google Scholar 

  126. A. Chyrkin, W. Sloof, R. Pillai, T. Galiullin, D. Grüner, and W. Quadakkers, Materials at High Temperatures 32, 102 (2015).

    Article  CAS  Google Scholar 

  127. R. Pillai, W. Sloof, A. Chyrkin, L. Singheiser, and W. Quadakkers, Materials at High Temperatures 32, 57 (2015).

    Article  CAS  Google Scholar 

  128. R. Pillai, T. Galiullin, A. Chyrkin, and W. Quadakkers, CALPHAD 53, 62 (2016).

    Article  CAS  Google Scholar 

  129. H. Larsson and L. Höglund, CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 50, 1 (2015).

    Article  CAS  Google Scholar 

  130. R. Pillai, A. Chyrkin, T. Galiullin, E. Wessel, D. Gruener, and W. J. Quadakkers, Corrosion Science 127, 27 (2017). https://doi.org/10.1016/j.corsci.2017.07.021.

    Article  CAS  Google Scholar 

  131. A. Chyrkin, R. Pillai, T. Galiullin, E. Wessel, D. Grüner, and W. Quadakkers, Corrosion Science, 124, 138 (2017). https://doi.org/10.1016/j.corsci.2017.05.017.

  132. D. Young, P. Huczkowski, T. Olszewski, T. Huttel, L. Singheiser, and W. J. Quadakkers, Corrosion Science 88, 161 (2014). https://doi.org/10.1016/j.corsci.2014.07.024.

    Article  CAS  Google Scholar 

  133. Y. Gong, D. J. Young, C. Atkinson, T. Olszewski, W. J. Quadakkers, and R. C. Reed, Corrosion Science 173, 108699 (2020). https://doi.org/10.1016/j.corsci.2020.108699.

  134. K. Bongartz, R. Schulten, W. Quadakkers, and H. Nickel, Corrosion 42, 390 (1986).

    Article  CAS  Google Scholar 

  135. K. Bongartz, W. J. Quadakkers, R. Schulten, and H. Nickel, Metallurgical Transactions A-Physical Metallurgy and Materials Science 20, 1021 (1989).

    Article  Google Scholar 

  136. T. Turpin, J. Dulcy, and M. Gantois, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science 36A, 2751 (2005).

    Article  CAS  Google Scholar 

  137. M. Romedenne, F. Rouillard, D. Hamon, B. Malard, and D. Monceau, Corrosion Science 159, 108147 (2019). https://doi.org/10.1016/j.corsci.2019.108147.

  138. U. Krupp and H. J. Christ, Oxidation of Metals 52, 277 (1999). https://doi.org/10.1023/A:1018843612011.

    Article  CAS  Google Scholar 

  139. U. Krupp and H. J. Christ, Oxidation of Metals 52, 299 (1999). https://doi.org/10.1023/A:1018895628849.

    Article  CAS  Google Scholar 

  140. V. B. Trindade, H. J. Christ, and U. Krupp, Rem-Revista Escola De Minas 62, 185 (2009).

    Article  Google Scholar 

  141. G. Goward, Surface and Coatings Technology 108–109, 73 (1998).

    Article  Google Scholar 

  142. W. Quadakkers, V. Shemet, D. Sebold, R. Anton, E. Wessel, and L. Singheiser, Surface and Coatings Technology 199, 77 (2005).

    Article  CAS  Google Scholar 

  143. J. A. Haynes, B. A. Pint, Y. Zhang, and I. G. Wright, Surface and Coatings Technology 202, 730 (2007).

    Article  CAS  Google Scholar 

  144. S. J. D. Matthew and J. Donachie, Superalloys: A Technical Guide, 2nd Edition (ASM International, 2002).

  145. D. Naumenko, R. Pillai, A. Chyrkin, and W. J. Quadakkers, Journal of Thermal Spray Technology 26, 1743 (2017). https://doi.org/10.1007/s11666-017-0649-z.

    Article  CAS  Google Scholar 

  146. D. Achar, R. Munoz-Arroyo, L. Singheiser, and W. Quadakkers, Surface and Coatings Technology 187, 272 (2004).

    Article  CAS  Google Scholar 

  147. R. Pillai, M. P. Taylor, T. Galiullin, A. Chyrkin, E. Wessel, H. Evans, and W. J. Quadakkers, Materials at High Temperatures 35, 78 (2017). https://doi.org/10.1080/09603409.2017.1396650.

  148. J. Nicholls, N. Simms, W. Chan, and H. Evans, Surface and Coatings Technology 149 , 236 (2002).

    Article  CAS  Google Scholar 

  149. E. Lee, D. Chartier, R. Biederman, and R. Sisson Jr., Surface and Coatings Technology 32, 19 (1987).

    Article  CAS  Google Scholar 

  150. K. Chan, N. Cheruvu, and G. Leverant, Journal of Engineering for Gas Turbines and Power 120, 609 (1998).

    Article  CAS  Google Scholar 

  151. A. Jalowicka, D. Naumenko, M. Ernsberger, R. Herzog, and W. J. Quadakkers, Materials at High Temperatures 35, 66 (2018).

    Article  CAS  Google Scholar 

  152. W. Leng, R. Pillai, P. Huczkowski, D. Naumenko, and W. J. Quadakkers, Surface and Coatings Technology 354, 268 (2018). https://doi.org/10.1016/j.surfcoat.2018.09.043.

    Article  CAS  Google Scholar 

  153. R. Darolia, D. Lahrman, and R. Field, Superalloys (The Metallurgical Society, 1988), 255 (1988).

  154. C. Rae, M. Karunaratne, C. Small, R. Broomfield, C. Jones, and R. Reed, Superalloys (The Metallurgical Society, 2000), 767 (2000).

  155. R. Pillai, E. Wessel, W. J. Nowak, D. Naumenko, and W. J. Quadakkers, JOM 70, 1520 (2018).

    Article  CAS  Google Scholar 

  156. W. Beele, N. Czech, W. J. Quadakkers, and W. Stamm, Surface and Coatings Technology 94–95, 41 (1997).

  157. T. J. Nijdam and W. G. Sloof, Materials at High Temperatures 22, 551 (2005).

    Article  CAS  Google Scholar 

  158. J. A. Nesbitt and R. W. Heckel, Thin Solid Films 119, 281 (1984).

    Article  CAS  Google Scholar 

  159. J. A. Nesbitt, Lifetime Modelling of High Temperature Corrosion Processes 34, 359 (2001).

  160. N. Matan, H. M. A. Winand, P. Carter, M. Karunaratne, P. D. Bogdanoff, and R. C. Reed, Acta Materialia 46 4587 (1998).

    Article  CAS  Google Scholar 

  161. N. Saunders, Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences 351, 543 (1995). https://doi.org/10.1098/rsta.1995.0052.

    Article  CAS  Google Scholar 

  162. K. V. Dahl, J. Hald, and A. Horsewell, Diffusion in Solids and Liquids - MASS DIFFUSION, 258–260, 73 (2006).

  163. Z. Hashin and S. Shtrikman, Journal of Applied Physics 33, 3125 (1962). https://doi.org/10.1063/1.1728579.

    Article  CAS  Google Scholar 

  164. M. Karunaratne, I. Di Martino, S. Ogden, D. Oates, and R. Thomson, Metallurgical and Materials Transactions A 43A, 774 (2012).

    Article  CAS  Google Scholar 

  165. H. Strandlund and H. Larsson, Defects and Diffusion Forum 233, 97 (2004).

    Article  Google Scholar 

  166. H. Strandlund, Computational Materials Science 29, 187 (2004).

    Article  Google Scholar 

  167. K. Yuan, R. Eriksson, R. L. Peng, X.-H. Li, S. Johansson, and Y.-D. Wang, Surface and Coatings Technology 232, 204 (2013).

    Article  CAS  Google Scholar 

  168. R. Eriksson, K. Yuan, X. H. Li, and R. L. Peng, Surface and Coatings Technology 253, 27 (2014). https://doi.org/10.1016/j.surfcoat.2014.05.010.

    Article  CAS  Google Scholar 

  169. Thermo-Calc, TCNI5, TCS Ni-based Superalloys Database (2011).

  170. Thermo-Calc, MOBNI2, TCS Ni-alloys Mobility Database (2011).

  171. A. Chyrkin, A. Epishin, R. Pillai, T. Link, G. Nolze, and W. J. Quadakkers, Journal of Phase Equilibria and Diffusion 37, 201 (2016). https://doi.org/10.1007/s11669-015-0444-9.

    Article  CAS  Google Scholar 

  172. T. Galiullin, A. Chyrkin, R. Pillai, R. Vassen, and W. J. Quadakkers, Surface and Coatings Technology 350, 359 (2018). https://doi.org/10.1016/j.surfcoat.2018.07.020.

    Article  CAS  Google Scholar 

  173. W. Leng, R. Pillai, D. Naumenko, T. Galiullin, and W. J. Quadakkers, Corrosion Science 167, 108494 (2020). https://doi.org/10.1016/j.corsci.2020.108494.

  174. A. Engström, J. Bratberg, Q. Chen, L. Höglund, and P. Mason, Advanced Materials Research 278, 198 (2011).

    Article  CAS  Google Scholar 

  175. R. Pillai, K. Kane, M. Lance, and B. Pint, Superalloys 2020, 824 (2020).

  176. A. Forslund and H. Larsson, Calphad 64, 278 (2019). https://doi.org/10.1016/j.calphad.2018.12.014.

    Article  CAS  Google Scholar 

  177. R. Pillai, A. Jalowicka, T. Galiullin, D. Naumenko, M. Ernsberger, R. Herzog, and W. J. Quadakkers, Calphad-Computer Coupling of Phase Diagrams and Thermochemistry 65, 340 (2019). https://doi.org/10.1016/j.calphad.2019.04.004.

    Article  CAS  Google Scholar 

  178. M. Schütze and W. J. Quadakkers, Oxidation of Metals 87, 681 (2017). https://doi.org/10.1007/s11085-017-9719-3.

    Article  CAS  Google Scholar 

  179. K. Matuszewski, A. Muller, N. Ritter, R. Rettig, K. J. Kurzydlowski, and R. F. Singer, Advanced Engineering Materials 17, 1127 (2015). https://doi.org/10.1002/adem.201500173.

    Article  CAS  Google Scholar 

  180. X. P. Tan, H. U. Hong, B. G. Choi, I. S. Kim, C. Y. Jo, T. Jin, and Z. Q. Hu, Journal of Materials Science 48, 1085 (2013). https://doi.org/10.1007/s10853-012-6840-1.

    Article  CAS  Google Scholar 

  181. J. G. Yoon, S. I. Kwon, J. W. Lee, X. P. Tan, B. G. Choi, I. S. Kim, C. Y. Jo, and H. U. Hong, Korean Journal of Metals and Materials 52, 397 (2014). https://doi.org/10.3365/Kjmm.2014.52.6.397.

    Article  CAS  Google Scholar 

  182. L.-Q. Chen, Materials Research 32, 113 (2002).

    Article  CAS  Google Scholar 

  183. L.-Q. Chen and W. Yang, Physics Review B 50, 15752 (1994).

  184. S. Hu and L. Chen, Acta Materials 49, 463 (2001).

    Article  CAS  Google Scholar 

  185. Y. Jin, Y. Wang, and A. Khachaturyan, Physics Letters 29, 3071 (2001).

    Google Scholar 

  186. D. J. Young and J. Q. Zhang, JOM 70, 1493 (2018). https://doi.org/10.1007/s11837-018-2944-7.

    Article  CAS  Google Scholar 

  187. D. Young, A. Chyrkin, and W. J. Quadakkers, Oxidation of Metals 77, 253 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Many of the experimental results reported in the present work were generated at IEK-2, Forschungszentrum Julich. The authors are grateful to Mr H. Cosler for carrying out the high-temperature exposures. Dr E. Wessel is kindly acknowledged for the EBSD measurements. Mr V. Gutzeit and Dr D. Grüner are acknowledged for optical microscopy and SEM/EDX/EDX analyses, respectively. P. Tortorelli, B.A. Pint and M. Romedenne are thanked for their valuable comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pillai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US Department of Energy (DOE). The US government retains and the publisher, by accepting the article for publication, acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pillai, R., Chyrkin, A. & Quadakkers, W.J. Modeling in High Temperature Corrosion: A Review and Outlook. Oxid Met 96, 385–436 (2021). https://doi.org/10.1007/s11085-021-10033-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-021-10033-y

Keywords

Navigation