Skip to main content
Log in

Micromechanics-based elasto-plastic–damage energy formulation for strain gradient solids with granular microstructure

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This paper is devoted to the development of a continuum theory for materials having granular microstructure and accounting for some dissipative phenomena like damage and plasticity. The continuum description is constructed by means of purely mechanical concepts, assuming expressions of elastic and dissipation energies as well as postulating a hemi-variational principle, without incorporating any additional postulate like flow rules. Granular micromechanics is connected kinematically to the continuum scale through Piola’s ansatz. Mechanically meaningful objective kinematic descriptors aimed at accounting for grain–grain relative displacements in finite deformations are proposed. Karush–Kuhn–Tucker (KKT)-type conditions, providing evolution equations for damage and plastic variables associated with grain–grain interactions, are derived solely from the fundamental postulates. Numerical experiments have been performed to investigate the applicability of the model. Cyclic loading–unloading histories have been considered to elucidate the material hysteretic features of the continuum, which emerge from simple grain–grain interactions. We also assess the competition between damage and plasticity, each having an effect on the other. Further, the evolution of the load-free shape is shown not only to assess the plastic behavior, but also to make tangible the point that, in the proposed approach, plastic strain is found to be intrinsically compatible with the existence of a placement function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 1–16 (2017)

  2. Alibert, J.-J., Della Corte, A., Giorgio, I., Battista, A.: Extensional elastica in large deformation as \(\backslash \) gamma-limit of a discrete 1d mechanical system. Z. Angew. Math. Phys. 68(2), 42 (2017)

    Article  Google Scholar 

  3. Ambati, M., Gerasimov, T., De Lorenzis, L.: Phase-field modeling of ductile fracture. Comput. Mech. 55(5) (2015)

  4. Ambati, M., Gerasimov, T., Lorenzis, L.: A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput. Mech. 55(2) (2015)

  5. Ambrosio, L., Lemenant, A., Royer-Carfagni, G.: A variational model for plastic slip and its regularization via \(\gamma \)-convergence. J. Elast. 110(2), 1–35 (2013)

    Article  MathSciNet  Google Scholar 

  6. Amor, H., Marigo, J.-J., Maurini, C.: Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J. Mech. Phys. Solids 57(8), 1209–1229 (2009)

    Article  ADS  Google Scholar 

  7. Bourdin, B., Francfort, G., Marigo, J.-J.: Numerical experiments in revisited brittle fracture. J. Mech. Phys. Solids 48(4), 797–826 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bourdin, B., Francfort, G., Marigo, J.-J.: The variational approach to fracture. J. Elast. 91(1), 5–148 (2008)

    Article  MathSciNet  Google Scholar 

  9. Chiaia, B., Kumpyak, O., Placidi, L., Maksimov, V.: Experimental analysis and modeling of two-way reinforced concrete slabs over different kinds of yielding supports under short-term dynamic loading. Eng. Struct. 96, 88–99 (2015)

    Article  Google Scholar 

  10. Contrafatto, L., Cuomo, M., Greco, L.: Meso-scale simulation of concrete multiaxial behaviour. Eur. J. Environ. Civ. Eng. 1–16 (2016)

  11. Cuomo, M., Nicolosi, A.: A poroplastic model for hygro-chemo-mechanical damage of concrete. In: EURO-C; Computational Modelling of Concrete Structures Conference, EURO-C; Computational Modelling of Concrete Structures, pp. 533–542 (2006)

  12. D’Annibale, F., Rosi, G., Luongo, A.: Linear stability of piezoelectric-controlled discrete mechanical systems under nonconservative positional forces. Meccanica 50(3), 825–839 (2015)

    Article  MathSciNet  Google Scholar 

  13. Della Corte, A., Giorgio, I., Scerrato, D.: A review of recent developments in mathematical modeling of bone remodeling. Proc. Inst. Mech. Eng. 234(3), 273–281 (2020)

    Article  Google Scholar 

  14. dell’Isola, F., Placidi, L.: Variational principles are a powerful tool also for formulating field theories. In: Variational Models and Methods in Solid and Fluid Mechanics, Springer, pp. 1–15 (2011)

  15. dell’Isola, F., Guarascio, M., Hutter, K.: A variational approach for the deformation of a saturated porous solid. a second-gradient theory extending terzaghi’s effective stress principle. Arch. Appl. Mech. 70(5), 323–337 (2000)

  16. dell’Isola, F., Vidoli, S.: Continuum modelling of piezoelectromechanical truss beams: an application to vibration damping. Arch. Appl. Mech. 19 (1998)

  17. Freddi, F., Royer-Carfagni, G.: Plastic flow as an energy minimization problem numerical experiments. J. Elast. 1(116), 53–74 (2014)

    Article  MathSciNet  Google Scholar 

  18. Freddi, F., Royer-Carfagni, G.: Phase-field slip-line theory of plasticity. J. Mech. Phys. Solids 94, 257–272 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Froli, M., Royer-Carfagni, G.: A mechanical model for the elastic-plastic behavior of metallic bars. Int. J. Solids Struct. 37(29), 3901–3918 (2000)

    Article  Google Scholar 

  20. Giorgio, I.: Numerical identification procedure between a micro-cauchy model and a macro-second gradient model for planar pantographic structures. Z. Angew. Math. Physik 67(4), 95 (2016)

    Article  MathSciNet  Google Scholar 

  21. Giorgio, I., Grygoruk, R., dell’Isola, F., Steigmann, D.J.: Pattern formation in the three-dimensional deformations of fibered sheets. Mech. Res. Commun. 69, 164–171 (2015)

    Article  Google Scholar 

  22. Giorgio, I., Harrison, P., Dell’Isola, F., Alsayednoor, J., Turco, E.: Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2216), 20180063 (2018)

    ADS  Google Scholar 

  23. Giorgio, I., Andreaus, U., dell’Isola, F., Lekszycki, T.: Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts. Extreme Mech. Lett. 13, 141–147 (2017)

    Article  Google Scholar 

  24. Giorgio, I., Andreaus, U., Scerrato, D., dellIsola, F.: A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomech. Model. Mechanobiol. 15(5), 1325–1343 (2016)

    Article  Google Scholar 

  25. Giorgio, I., Culla, A., Del Vescovo, D.: A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials. Int. J. Solids Struct. 203, 73–83 (2020)

    Article  Google Scholar 

  26. Giorgio, I., Culla, A., Del Vescovo, D.: Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network. Arch. Appl. Mech. 79(9), 859–879 (2009)

    Article  ADS  Google Scholar 

  27. Giorgio, I., dell’Isola, F., Andreaus, U., Alzahrani, F., Hayat, T., Lekszytcki, T.: On mechanically driven biological stimulus for bone remodeling as a diffusive phenomenon (2019)

  28. Harrison, P., Anderson, D., Alvarez, M.F., Bali, E., Mateos, Y.: Measuring and modelling the in-plane bending stiffness and wrinkling behaviour of engineering fabrics. In: EUROMECH Colloquium 569: Multiscale Modeling of Fibrous and Textile Materials, Chatenay-Malabry (2016)

  29. Javili, A., dellIsola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Larsen, C.J.: A new variational principle for cohesive fracture and elastoplasticity. Mech. Res. Commun. 58, 133–138 (2014)

    Article  Google Scholar 

  31. Li, T.Y., Marigo, J-J., Guilbaud, D., Potapov, S.: Variational approach to dynamic brittle fracture via gradient damage models. In: Applied Mechanics and Materials, vol. 784, pp. 334–341 (2015)

  32. Marigo, J.-J., Maurini, C., Pham, K.: An overview of the modelling of fracture by gradient damage models. Meccanica (2016)

  33. Maurini, C., dell’Isola, F., Pouget, Joë l.: On models of layered piezoelectric beams for passive vibration control. J. Phys. IV Colloque 10 (2004)

  34. Miehe, C., Hofacker, M., Welschinger, F.: A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput. Methods Appl. Mech. Eng. 199(45), 2765–2778 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  35. Misra, A.: Effect of asperity damage on shear behavior of single fracture. Eng. Fract. Mech. 69(17), 1997–2014 (2002)

  36. Misra, A., Poorsolhjouy, P.: Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Math. Mech. Solids (2015)

  37. Misra, A., Singh, V.: Thermomechanics-based nonlinear rate-dependent coupled damage-plasticity granular micromechanics model. Contin. Mech. Thermodyn. 27, 787 (2015)

  38. Misra, A., Luca, P., Turco, E.: Variational methods for discrete models of granular materials. In: Encylopedia of Continuum Mechanics, Springer, Heidelberg. ISBN: 978-3-662-53605-6. https://doi.org/10.1007/978-3-662-53605-6 (2020)

  39. Placidi, L.: A variational approach for a nonlinear 1-dimensional second gradient continuum damage model. Contin. Mech. Thermodyn. 27(4–5), 623 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  40. Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear d4 orthotropic second gradient elastic model. J. Eng. Math. 1–21 (2016)

  41. Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Contin. Mech. Thermodyn. 28(1–2), 119–137 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. Placidi, L., Barchiesi, E.: Energy approach to brittle fracture in strain-gradient modelling. Proc. R. Soc. A Math. Phys. Eng. Sci. 474(2210), 20170878 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  43. Placidi, L., Barchiesi, E., Misra, A.: A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results. Math. Mech. Complex Syst. 6(2), 77–100 (2018)

    Article  MathSciNet  Google Scholar 

  44. Placidi, L., Misra, A., Barchiesi, E.: Two-dimensional strain gradient damage modeling: a variational approach. Z. Angew. Math. Physik 69(3), 56 (2018)

    Article  MathSciNet  Google Scholar 

  45. Placidi, L., Misra, A., Barchiesi, E.: Simulation results for damage with evolving microstructure and growing strain gradient moduli. Contin. Mech. Thermodyn. 31(4), 1143–1163 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  46. Poorsolhjouy, P., Misra, A.: Effect of intermediate principal stress and loading-path on failure of cementitious materials using granular micromechanics. Int. J. Solids Struct. 108, 139–152 (2017)

    Article  Google Scholar 

  47. Reddy, B.: The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity, part 1: polycrystalline plasticity. Continu. Mech. Thermodyn. 23, 527–549 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  48. Reddy, B.: The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity, part 2: single-crystal plasticity. Continu. Mech. Thermodyn. 23, 527–549 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  49. Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2017)

    Article  Google Scholar 

  50. Scerrato, D., Giorgio, I., Corte, A., Madeo, A., Dowling, N., Darve, F.: Towards the design of an enriched concrete with enhanced dissipation performances. Cem. Concr. Res. 84, 48–61 (2016)

    Article  Google Scholar 

  51. Scerrato, D., Giorgio, I., Della Corte, A., Madeo, A., Limam, A.: A micro-structural model for dissipation phenomena in the concrete. Int. J. Numer. Anal. Meth. Geomech. (2015)

  52. Scerrato, D., Giorgio, I., Madeo, A., Limam, A., Darve, F.: A simple non-linear model for internal friction in modified concrete. Int. J. Eng. Sci. 80, 136–152 (2014)

    Article  MathSciNet  Google Scholar 

  53. Sicsic, P., Marigo, J-J.: From gradient damage laws to Griffith’s theory of crack propagation. J. Elast. 1–20 (2013)

  54. Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. (2017)

  55. Timofeev, D., Barchiesi, E., Misra, A., Placidi, L.: Hemivariational continuum approach for granular solids with damage-induced anisotropy evolution. Math. Mech. Solids (2020)

  56. Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Physik 67 (2016)

  57. Turco, E., Golaszewski, M., Cazzani, A., Rizzi, N.L.: Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model. Mech. Res. Commun. 76, 51–56 (2016)

    Article  Google Scholar 

  58. Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. B Eng. 118, 1–14 (2017)

    Article  Google Scholar 

  59. Yang, Y., Misra, A.: Micromechanics based second gradient continuum theory for shear band modeling in cohesive granular materials following damage elasticity. Int. J. Solids Struct. 49(18), 2500–2514 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

AM is supported in part by the United States National Science Foundation Grant CMMI -1727433. LP is supported in part by the RESBA project (from Politecnico di Torino).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Placidi.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Justification of normal and tangent relative displacement definitions

Appendix: Justification of normal and tangent relative displacement definitions

Let us assume that the grain p is at the origin (\(\varvec{X}_{p}=0\)) and the grain n at \(\varvec{X}_{n}=L\hat{c}\).

For the placement field indicating an elongation along the intergranular axis \(\hat{c}\), i.e.,

$$\begin{aligned} \chi \left( \varvec{X}\right) =\varvec{X}+\alpha \left( \varvec{X}\cdot \hat{c}\right) \hat{c}, \end{aligned}$$

on the one hand, the grain p does not displace (\(\chi \left( \varvec{X}_{p}\right) =0=u\left( \varvec{X}_{p}\right) \)), the grain n places at \(\chi \left( \varvec{X}_{n}\right) =L\hat{c}+\alpha L\hat{c}\) with a displacement \(u\left( \varvec{X}_{n}\right) =\alpha L\hat{c}\). Thus, the displacement of one grain with respect to the other along the intergranular axis \(\hat{c}\) is

$$\begin{aligned} \left[ u\left( \varvec{X}_{n}\right) -u\left( \varvec{X}_{p}\right) \right] \cdot \hat{c}=\alpha L, \end{aligned}$$

and no relative displacement occurs in the transverse direction. On the other hand, the deformation gradient,

$$\begin{aligned} F=\nabla \varvec{\chi }=I+\alpha \hat{c}\otimes \hat{c}=F^{T} \end{aligned}$$

is symmetric and the objective relative displacement yields,

$$\begin{aligned} u^{np}=\left[ I+\alpha \hat{c}\otimes \hat{c}\right] \left( L\hat{c}+\alpha L\hat{c}\right) -L\hat{c}=2\alpha L\hat{c}+\alpha ^{2}L\hat{c}. \end{aligned}$$

Thus, for small deformation (\(\alpha \ll 1\)), the definition (11)\(_{1}\) of the normal displacement is justified, i.e., \(u_{\eta }={\frac{1}{2}}u^{np}\cdot \hat{c}.\)

For the placement field indicating a shear deformation transverse (e.g., in a direction \(\hat{d}\)) to the intergranular axis \(\hat{c}\),

$$\begin{aligned} \chi \left( \varvec{X}\right) =\varvec{X}+\alpha \left( \varvec{X}\cdot \hat{c}\right) \hat{d},\qquad \hat{c}\cdot \hat{d}=0, \end{aligned}$$

On the one hand, the grain p does not displace (\(\chi \left( \varvec{X}_{p}\right) =u\left( \varvec{X}_{p}\right) =0\)), the grain n places at \(\chi \left( \varvec{X}_{n}\right) =L\hat{c}+\alpha L\hat{d}\) with a displacement \(u\left( \varvec{X}_{n}\right) =\alpha L\hat{d}\). Thus, the displacement of one grain with respect to the other along the direction \(\hat{d}\) orthogonal to the intergranular axis \(\hat{c}\) is

$$\begin{aligned} \left[ u\left( \varvec{X}_{n}\right) -u\left( \varvec{X}_{p}\right) \right] \cdot \hat{d}=\alpha L, \end{aligned}$$

and no relative displacement occurs along \(\hat{c}\). On the other hand, the deformation gradient

$$\begin{aligned} F=\nabla \varvec{\chi }=I+\alpha \hat{d}\otimes \hat{c} \end{aligned}$$

is not symmetric and the objective relative displacement yields,

$$\begin{aligned} u^{np}=\left[ I+\alpha \hat{c}\otimes \hat{d}\right] \left( L\hat{c}+\alpha L\hat{d}\right) -L\hat{c}=L\hat{c}+\alpha L\hat{d}+\alpha \hat{c}\alpha L-L\hat{c}=\alpha L\hat{d}+\alpha ^{2}L\hat{c}. \end{aligned}$$

Thus, for small deformation (\(\alpha \ll 1\)) the definition (11)\(_{2}\) of the tangent displacement is justified, i.e., \(u_{\tau }=u^{np}-\left( u^{np}\cdot \hat{c}\right) \hat{c}.\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Placidi, L., Barchiesi, E., Misra, A. et al. Micromechanics-based elasto-plastic–damage energy formulation for strain gradient solids with granular microstructure. Continuum Mech. Thermodyn. 33, 2213–2241 (2021). https://doi.org/10.1007/s00161-021-01023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-021-01023-1

Keywords

Navigation