Register      Login
Australian Journal of Chemistry Australian Journal of Chemistry Society
An international journal for chemical science
RESEARCH ARTICLE (Open Access)

Untargeted Metabolomic Analyses Reveal Chemical Complexity of Dioecious Cannabis Flowers

Matthew T. Welling https://orcid.org/0000-0002-5551-1073 A , Myrna A. Deseo A B , Antony Bacic A B and Monika S. Doblin A B C
+ Author Affiliations
- Author Affiliations

A La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Life Sciences, AgriBio Building, La Trobe University, Bundoora, Vic. 3086, Australia.

B Australian Research Council Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, Vic. 3086, Australia.

C Corresponding author. Email: m.doblin@latrobe.edu.au

Australian Journal of Chemistry 74(6) 463-479 https://doi.org/10.1071/CH21033
Submitted: 30 January 2021  Accepted: 26 April 2021   Published: 21 May 2021

Journal Compilation © CSIRO 2021 Open Access CC BY-NC-ND

Abstract

Cannabis is a mostly dioecious multi-use flowering plant genus. Sexual dimorphism is an important characteristic in Cannabis-based commercial production systems, which has consequences for fibre, seed, and the yield of secondary metabolites, such as phytocannabinoid and terpenes for therapeutic uses. Beyond the obvious morphological differences between male and female plants, metabolic variation among dioecious flowers is largely undefined. Here, we report a pilot metabolomic study comparing staminate (male) and pistillate (female) unisexual flowers. Enrichment of the α-linolenic acid pathway and consensus evaluation of the jasmonic acid (JA) related compound 12-oxo-phytodienoicacid (OPDA) among differentially abundant metabolites suggests that oxylipin signalling is associated with secondary metabolism and sex expression in female flowers. Several putative phytocannabinoid-like compounds were observed to be upregulated in female flowers, but full identification was not possible due to the limitation of available databases. Targeted analysis of 14 phytocannabinoids using certified reference standards (cannabidiolic acid (CBDA), cannabidiol (CBD), Δ9-tetrahydrocannabinolic acid A (Δ9-THCAA), Δ9-tetrahydrocannabinol (Δ9-THC), cannabichromenic acid (CBCA), cannabichromene (CBC), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabinolic acid (CBNA), cannabinol (CBN), cannabidivarinic acid (CBDVA), cannabidivarin (CBDV), tetrahydrocannabivarinic acid (THCVA), and tetrahydrocannabivarin (THCV)) showed a higher total phytocannabinoid content in female flowers compared with the male flowers, as expected. In summary, the development of a phytocannabinoid-specific accurate-mass MSn fragmentation spectral library and gene pool representative metabolome has the potential to improve small molecule compound annotation and accelerate understanding of metabolic variation underlying phenotypic diversity in Cannabis.

Keywords: liquid chromatography, mass spectrometry, phytochemistry, metabolism, Cannabis, cannabinoids, untargeted metabolomics, flowering.


References

[1]  J. M. McPartland, W. Hegman, T. Long, Veg. Hist. Archaeobot. 2019, 28, 691.
         | Crossref | GoogleScholarGoogle Scholar |

[2]  E. Small, Bot. Rev. 2015, 81, 306.
         | Crossref | GoogleScholarGoogle Scholar |

[3]  E. Small, A. Cronquist, Taxon 1976, 25, 405.
         | Crossref | GoogleScholarGoogle Scholar |

[4]  R. H. W. Bradshaw, P. Coxon, J. R. A. Greig, A. R. Hall, New Phytol. 1981, 89, 503.
         | Crossref | GoogleScholarGoogle Scholar |

[5]  I. J. Flores-Sanchez, R. Verpoorte, Phytochem. Rev. 2008, 7, 615.
         | Crossref | GoogleScholarGoogle Scholar |

[6]  L. O. Hanuš, S. M. Meyer, E. Muñoz, O. Taglialatela-Scafati, G. Appendino, Nat. Prod. Rep. 2016, 33, 1357.
         | Crossref | GoogleScholarGoogle Scholar | 27722705PubMed |

[7]  E. D. French, Neurosci. Lett. 1997, 226, 159.
         | Crossref | GoogleScholarGoogle Scholar | 9175591PubMed |

[8]  O. Devinsky, J. H. Cross, L. Laux, E. Marsh, I. Miller, R. Nabbout, et al. N. Engl. J. Med. 2017, 376, 2011.
         | Crossref | GoogleScholarGoogle Scholar | 28538134PubMed |

[9]  M. Heblinski, M. Santiago, C. Fletcher, J. Stuart, M. Connor, I. S. McGregor, et al. Cannabis Cannabinoid Res. 2020, 5, 305.
         | Crossref | GoogleScholarGoogle Scholar | 33376801PubMed |

[10]  C. Staginnus, S. Zörntlein, E. de Meijer, J. Forensic Sci. 2014, 59, 919.
         | Crossref | GoogleScholarGoogle Scholar | 24579739PubMed |

[11]  M. T. Welling, L. Liu, C. A. Raymond, T. Kretzschmar, O. Ansari, G. J. King, Sci. Rep. 2019, 9, 11421.
         | Crossref | GoogleScholarGoogle Scholar | 31388099PubMed |

[12]  S. J. Livingston, T. D. Quilichini, J. K. Booth, D. C. Wong, K. H. Rensing, J. Laflamme‐Yonkman, et al. Plant J. 2020, 101, 37.
         | Crossref | GoogleScholarGoogle Scholar | 31469934PubMed |

[13]  N. Happyana, S. Agnolet, R. Muntendam, A. Van Dam, B. Schneider, O. Kayser, Phytochemistry 2013, 87, 51.
         | Crossref | GoogleScholarGoogle Scholar | 23280038PubMed |

[14]  B. Spitzer-Rimon, S. Duchin, N. Bernstein, R. Kamenetsky, Front. Plant Sci. 2019, 10, 350.
         | Crossref | GoogleScholarGoogle Scholar | 31001293PubMed |

[15]  V. C. Moliterni, L. Cattivelli, P. Ranalli, G. Mandolino, Euphytica 2004, 140, 95.
         | Crossref | GoogleScholarGoogle Scholar |

[16]  Z. K. Punja, J. E. Holmes, Front. Plant Sci. 2020, 11, 718.
         | Crossref | GoogleScholarGoogle Scholar | 32670310PubMed |

[17]  J. Petit, E. M. Salentijn, M.-J. Paulo, C. Thouminot, B. J. van Dinter, G. Magagnini, et al. Front. Plant Sci. 2020, 11, 102.
         | Crossref | GoogleScholarGoogle Scholar | 32153610PubMed |

[18]  M. G. Divashuk, O. S. Alexandrov, O. V. Razumova, I. V. Kirov, G. I. Karlov, PLoS One 2014, 9, e85118.
         | Crossref | GoogleScholarGoogle Scholar | 24465491PubMed |

[19]  J. D. Lubell, M. H. Brand, Horttechnology 2018, 28, 743.
         | Crossref | GoogleScholarGoogle Scholar |

[20]  H. M. Ram, V. S. Jaiswal, Planta 1972, 105, 263.
         | Crossref | GoogleScholarGoogle Scholar |

[21]  N. Sriram, H. M. Ram, Curr. Sci. 1984, 53, 735.

[22]  G. Mandolino, A. Carboni, Euphytica 2004, 140, 107.
         | Crossref | GoogleScholarGoogle Scholar |

[23]  E. Small, S. G. Naraine, Genet. Resour. Crop Evol. 2016, 63, 339.
         | Crossref | GoogleScholarGoogle Scholar |

[24]  A.-M. Faux, X. Draye, R. Lambert, R. d’Andrimont, P. Raulier, P. Bertin, Eur. J. Agron. 2013, 47, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[25]  D. U. Nagy, K. Cianfaglione, F. Maggi, S. Sut, S. Dall’Acqua, Chem. Biodivers. 2019, 16, e1800562.
         | Crossref | GoogleScholarGoogle Scholar | 30548994PubMed |

[26]  A. Ohlsson, C. Abou-Chaar, S. Agurell, I. Nilsson, K. Olofsson, F. Sandberg, Bull. Narc. 1971, 23, 29.

[27]  R. Latta, B. Eaton, Econ. Bot. 1975, 29, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[28]  H. Kushima, Y. Shoyama, I. Nishioka, Chem. Pharm. Bull. 1980, 28, 594.
         | Crossref | GoogleScholarGoogle Scholar |

[29]  A. Cerrato, G. Cannazza, A. L. Capriotti, C. Citti, G. La Barbera, A. Laganà, et al. Talanta 2020, 209, 120573.
         | Crossref | GoogleScholarGoogle Scholar | 31892008PubMed |

[30]  B. Hurgobin, M. Tamiru‐Oli, M. T. Welling, M. S. Doblin, A. Bacic, J. Whelan, et al. New Phytol. 2021, 230, 73.
         | Crossref | GoogleScholarGoogle Scholar | 33283274PubMed |

[31]  G. Nyamundanda, I. C. Gormley, Y. Fan, W. M. Gallagher, L. Brennan, BMC Bioinformatics 2013, 14, 338.
         | Crossref | GoogleScholarGoogle Scholar | 24261687PubMed |

[32]  D. Dudzik, C. Barbas-Bernardos, A. García, C. Barbas, J. Pharm. Biomed. Anal. 2018, 147, 149.
         | Crossref | GoogleScholarGoogle Scholar | 28823764PubMed |

[33]  B. Worley, R. Powers, Curr. Metabolomics 2013, 1, 92.
         | 26078916PubMed |

[34]  C. Citti, U. M. Battisti, D. Braghiroli, G. Ciccarella, M. Schmid, M. A. Vandelli, et al. Phytochem. Anal. 2018, 29, 144.
         | Crossref | GoogleScholarGoogle Scholar | 28915313PubMed |

[35]  L. W. Sumner, A. Amberg, D. Barrett, M. H. Beale, R. Beger, C. A. Daykin, et al. Metabolomics 2007, 3, 211.
         | Crossref | GoogleScholarGoogle Scholar | 24039616PubMed |

[36]  P. Dayanandan, P. B. Kaufman, Am. J. Bot. 1976, 63, 578.
         | Crossref | GoogleScholarGoogle Scholar |

[37]  E. P. M. de Meijer, K. M. Hammond, Euphytica 2016, 210, 291.
         | Crossref | GoogleScholarGoogle Scholar |

[38]  B. Ylstra, A. Touraev, R. M. B. Moreno, E. Stöger, A. J. Van Tunen, O. Vicente, et al. Plant Physiol. 1992, 100, 902.
         | Crossref | GoogleScholarGoogle Scholar | 16653074PubMed |

[39]  L. Taylor, R. Jorgensen, J. Hered. 1992, 83, 11.
         | Crossref | GoogleScholarGoogle Scholar |

[40]  E. G. Schijlen, C. R. de Vos, S. Martens, H. H. Jonker, F. M. Rosin, J. W. Molthoff, et al. Plant Physiol. 2007, 144, 1520.
         | Crossref | GoogleScholarGoogle Scholar | 17478633PubMed |

[41]  X. Ding, X. Wang, Q. Li, L. Yu, Q. Song, J. Gai, et al. Int. J. Mol. Sci. 2019, 20, 2869.
         | Crossref | GoogleScholarGoogle Scholar |

[42]  A. P. Brown, J. T. Kroon, D. Swarbreck, M. Febrer, T. R. Larson, I. A. Graham, et al. PLoS One 2012, 7, e30100.
         | Crossref | GoogleScholarGoogle Scholar | 23284689PubMed |

[43]  N. E. Rothnie, M. V. Palmer, D. G. Burke, J. P. Sang, E. P. Hilliard, P. A. Salisbury, et al. Phytochemistry 1987, 26, 1895.
         | Crossref | GoogleScholarGoogle Scholar |

[44]  F. Opute, Phytochemistry 1975, 14, 1023.
         | Crossref | GoogleScholarGoogle Scholar |

[45]  A. Dave, I. A. Graham, Front. Plant Sci. 2012, 3, 42.
         | Crossref | GoogleScholarGoogle Scholar | 22645585PubMed |

[46]  N. Taki, Y. Sasaki-Sekimoto, T. Obayashi, A. Kikuta, K. Kobayashi, T. Ainai, et al. Plant Physiol. 2005, 139, 1268.
         | Crossref | GoogleScholarGoogle Scholar | 16258017PubMed |

[47]  A. Moreno-Rodríguez, R. Santos-Castro, J. Vázquez-Medrano, R. E. Quintanar-Zúñiga, F. A. García-García, L. B. Hernández-Portilla, et al. Nat. Prod. Res. 2020, 34, 1942.
         | Crossref | GoogleScholarGoogle Scholar | 30724587PubMed |

[48]  H. Enomoto, T. Sensu, K. Sato, F. Sato, T. Paxton, E. Yumoto, et al. Sci. Rep. 2017, 7, 42977.
         | Crossref | GoogleScholarGoogle Scholar | 28211480PubMed |

[49]  S. Goetz, A. Hellwege, I. Stenzel, C. Kutter, V. Hauptmann, S. Forner, et al. Plant Physiol. 2012, 158, 1715.
         | Crossref | GoogleScholarGoogle Scholar | 22337921PubMed |

[50]  K. Wang, Q. Guo, J. E. Froehlich, H. L. Hersh, A. Zienkiewicz, G. A. Howe, et al. Plant Cell 2018, 30, 1006.
         | Crossref | GoogleScholarGoogle Scholar | 29666162PubMed |

[51]  E. Galoch, Acta Soc. Bot. Pol. 1978, 47, 153.
         | Crossref | GoogleScholarGoogle Scholar |

[52]  M. Hofinger, Arch. Int. Physiol. Biochim. 1969, 77, 225.
         | Crossref | GoogleScholarGoogle Scholar | 4184292PubMed |

[53]  F. Salari, H. Mansori, Journal of Plant Process and Function 2013, 1, 51.

[54]  H. Mansouri, Z. Asrar, J. Szopa, Plant Growth Regul. 2009, 58, 269.
         | Crossref | GoogleScholarGoogle Scholar |

[55]  A. M. Adal, K. Doshi, L. Holbrook, S. S. Mahmoud, Planta 2021, 253, 17.
         | Crossref | GoogleScholarGoogle Scholar | 33392743PubMed |

[56]  R. Mechoulam, Z. Ben-Zvi, Y. Gaoni, Tetrahedron 1968, 24, 5615.
         | Crossref | GoogleScholarGoogle Scholar | 5732891PubMed |

[57]  N. M. Kogan, R. Rabinowitz, P. Levi, D. Gibson, P. Sandor, M. Schlesinger, et al. J. Med. Chem. 2004, 47, 3800.
         | Crossref | GoogleScholarGoogle Scholar | 15239658PubMed |

[58]  J. Díaz-Alonso, J. Paraíso-Luna, C. Navarrete, C. Del Río, I. Cantarero, B. Palomares, et al. Sci. Rep. 2016, 6, 29789.
         | Crossref | GoogleScholarGoogle Scholar | 27430371PubMed |

[59]  K. M. Regal, S. L. Mercer, J. E. Deweese, Chem. Res. Toxicol. 2014, 27, 2044.
         | Crossref | GoogleScholarGoogle Scholar | 25409338PubMed |

[60]  J. T. Wilson, C. A. Fief, K. D. Jackson, S. L. Mercer, J. E. Deweese, Chem. Res. Toxicol. 2018, 31, 137.
         | Crossref | GoogleScholarGoogle Scholar | 29272108PubMed |

[61]  R. Mechoulam, L. Hanuš, Chem. Phys. Lipids 2002, 121, 35.
         | Crossref | GoogleScholarGoogle Scholar | 12505688PubMed |

[62]  L. M. Bornheim, M. P. Grillo, Chem. Res. Toxicol. 1998, 11, 1209.
         | Crossref | GoogleScholarGoogle Scholar | 9778318PubMed |

[63]  E. Palazzo, L. Luongo, F. Guida, V. de Novellis, S. Boccella, C. Cristiano, et al. Neuropsychiatry 2019, 9, 2035.

[64]  S. Petrosino, V. Di Marzo, Br. J. Pharmacol. 2017, 174, 1349.
         | Crossref | GoogleScholarGoogle Scholar | 27539936PubMed |

[65]  O. Aizpurua-Olaizola, U. Soydaner, E. Öztürk, D. Schibano, Y. Simsir, P. Navarro, et al. J. Nat. Prod. 2016, 79, 324.
         | Crossref | GoogleScholarGoogle Scholar | 26836472PubMed |

[66]  B. De Backer, K. Maebe, A. G. Verstraete, C. Charlier, J. Forensic Sci. 2012, 57, 918.
         | Crossref | GoogleScholarGoogle Scholar | 22390363PubMed |

[67]  S. Chandra, H. Lata, M. A. ElSohly, L. A. Walker, D. Potter, Epilepsy Behav. 2017, 70, 302.
         | Crossref | GoogleScholarGoogle Scholar | 28202406PubMed |

[68]  C. Citti, F. Russo, S. Sgrò, A. Gallo, A. Zanotto, F. Forni, et al. Anal. Bioanal. Chem. 2020, 412, 4009.
         | Crossref | GoogleScholarGoogle Scholar | 32285185PubMed |

[69]  J. López-Ibáñez, F. Pazos, M. Chagoyen, Nucleic Acids Res. 2016, 44, W201.
         | Crossref | GoogleScholarGoogle Scholar | 27084944PubMed |

[70]  Y. Benjamini, Y. Hochberg, J. R. Stat. Soc. B 1995, 57, 289.
         | Crossref | GoogleScholarGoogle Scholar |