Skip to main content
Log in

Calibration of Ductile Fracture Criterion with Optimal Experiment Design and Prediction on Forming Limit for Aluminum Alloy Sheet

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper is concerned with accurate prediction on the fracture strain and fracture forming limit curve (FFLC) by calibrating the material constants by the specimens with reasonable shapes and sizes. The Lou–Huh ductile fracture criteria (DFC) in analytic and integral forms were adopted, and the theoretical formulas in various stress states were derived. The process and basis for calibrating the material constants of DFC by hybrid experimental–numerical method were described in detail. Moreover, the material constants calculated by different test groups including the uniaxial tensile, plane strain and shear specimens with different shapes and sizes vary enormously, and the optimal test group was determined to calibrate the material constant of DFC. Meanwhile, it can be found that the different material constants greatly impact on the magnitude and shape of the fracture strain and FFLC, and the effect of each material constant on the fracture strain and FFLC was analyzed and compared in this paper. Finally, the FFLCs theoretically calculated by DFC in analytic and integral forms were verified by the experimental forming limiting data of the bulge test.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. ​W. Muhammad, A.P. Brahme, R.K. Sabat, R.K. Mishra, K. Inal. Mater. Sci. Eng. A 759, 613 (2019)

    Article  CAS  Google Scholar 

  2. Z.Y. Cai, S.H. Wang, X.D. Xu, M.Z. Li, J. Mater. Process. Tech. 209, 396 (2009)

    Article  CAS  Google Scholar 

  3. M. Scales, K. Chen, S. Kyriakides, Int. J. Plasticity 120, 340 (2019)

    Article  CAS  Google Scholar 

  4. Z.Y. Cai, S.H. Wang, M.Z. Li, Int. J. Adv. Manuf. Tech. 37, 927 (2008)

    Article  Google Scholar 

  5. J. Cao, F.G. Li, X.K. Ma, Z.k. Sun, Int. J. Mech. Sci. 128–129, 445 (2017)

    Article  Google Scholar 

  6. F. Djavanroodi, M. Ebrahimi, M. Janbakhsh, Results Phys. 14, 102496 (2019)

    Article  Google Scholar 

  7. T. Wierzbicki, Y.B. Bao, Y.W. Lee, Y.l. Bai, Int. J. Mech. Sci. 47, 719 (2005)

    Article  Google Scholar 

  8. M.G. Cockcroft, D.J. Latham, J. I. Met. 96, 33 (1968)

    CAS  Google Scholar 

  9. G.R. Johnson, W.H. Cook, Eng. Fract. Mech. 21, 31 (1985)

    Article  Google Scholar 

  10. S.E. Clift, P. Hartley, C.E.N. Sturgess, G.W. Rowe, Int. J. Mech. Sci. 32, 1 (1990)

    Article  Google Scholar 

  11. Y.K. Ko, J.S. Lee, H. Huh, H.K. Kim, S.H. Park, J. Mater. Process. Tech. 187–188, 358 (2007)

    Article  Google Scholar 

  12. Y.S. Kim, S.H. Yang, Chin. J. Mech. Eng. 30, 625 (2017)

    Article  CAS  Google Scholar 

  13. Y.L. Bai, T. Wierzbicki, Int. J. Fracture 161, 1 (2010)

    Article  CAS  Google Scholar 

  14. Y.S. Lou, H. Huh, S. Lim, K. Pack, Int. J. Solids Struct. 49, 3605 (2012)

    Article  CAS  Google Scholar 

  15. Y.S. Lou, H. Huh, J. Mater. Process. Tech. 213, 1284 (2013)

    Article  CAS  Google Scholar 

  16. Y.B. Bao, T. Wierzbicki, Int. J. Mech. Sci. 46, 81 (2004)

    Article  Google Scholar 

  17. L. Malcher, F.M. Andrade Pires, J.M.A. César de Sá, Int. J. Plasticity 54, 193 (2014)

    Article  CAS  Google Scholar 

  18. Y.S. Lou, H. Huh, Int. J. Solids Struct. 50, 447 (2013)

    Article  CAS  Google Scholar 

  19. Y.L. Bai, T. Wierzbicki, Int. J. Plasticity 24, 1071 (2008)

    Article  CAS  Google Scholar 

  20. Y.B. Bao, T. Wierzbicki, Eng. Fract. Mech. 72, 1049 (2005)

    Article  Google Scholar 

  21. M. Brunig, S. Gerke, M. Schmidt, Int. J. Plasticity 102, 70 (2018)

    Article  Google Scholar 

  22. X. Teng, T. Wierzbicki, Eng. Fract. Mech. 73, 1653 (2006)

    Article  Google Scholar 

  23. M.J. Mirnia, M. Vahdani, J. Mater. Process. Tech. 280, 116589 (2020)

    Article  CAS  Google Scholar 

  24. H. Talebi-Ghadikolaee, H.M. Naeini, M.J. Mirnia, M.A. Mirzai, S. Alexandrov, M.S. Zeinali, J. Mater. Process. Tech. 283, 116690 (2020)

    Article  CAS  Google Scholar 

  25. H. Talebi-Ghadikolaee, H.M. Naeini, M.J. Mirnia, M.A. Mirzai, S. Alexandrov, H. Gorji, Int. J. Adv. Manuf. Tech. 105, 5217 (2019)

    Article  Google Scholar 

  26. Y.B. Bao, Ph.D. Thesis, Massachusetts Institute of Technology (2003)

  27. H. Li, M.W. Fu, J. Lu, H. Yang, Int. J. Plasticity 27, 147 (2011)

    Article  Google Scholar 

  28. C.C. Roth, D. Mohr, Int. J. Plasticity 56, 19 (2014)

    Article  CAS  Google Scholar 

  29. M. Dunand, D. Mohr, Eng. Fract. Mech. 78, 2919 (2011)

    Article  Google Scholar 

  30. F. Ozturk, D. Lee, J. Mater. Process. Tech. 147, 397 (2004)

    Article  Google Scholar 

  31. H. Takuda, K. Mori, N. Takakura, K. Yamaguchi, Int. J. Mech. Sci. 42, 785 (2000)

    Article  Google Scholar 

  32. C. Cheng, B. Meng, J.Q. Han, M. Wan, X.D. Wu, R. Zhao, Mater. Design 118, 89 (2017)

    Article  CAS  Google Scholar 

  33. L.R. Sun, Z.Y. Cai, D.Y. He, L. Li, Metals 9, 1129 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China (Grant No. 51975248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongyi Cai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Cai, Z., Gao, J. et al. Calibration of Ductile Fracture Criterion with Optimal Experiment Design and Prediction on Forming Limit for Aluminum Alloy Sheet. Met. Mater. Int. 28, 848–861 (2022). https://doi.org/10.1007/s12540-021-00970-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-021-00970-3

Keywords

Navigation