Skip to main content
Log in

Polyharmonic Almost Complex Structures

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We consider the existence and regularity of weakly polyharmonic almost complex structures on a compact almost Hermitian manifold \(M^{2m}\). Such objects satisfy the elliptic system \([\varDelta ^m J, J]=0\) weakly. We prove a general regularity theorem for semilinear systems in critical dimensions (with critical growth nonlinearities), which includes the system of polyharmonic almost complex structures in dimension four and six.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, S.-Y.A., Wang, L., Yang, P.C.: Regularity of harmonic maps. Commun. Pure Appl. Math. 52(9), 1099–1111 (1999)

    Article  MathSciNet  Google Scholar 

  2. Chang, S.-Y.A., Wang, L., Yang, P.C.: A regularity theory of biharmonic maps. Commun. Pure Appl. Math. 52(9), 1113–1137 (1999)

    Article  MathSciNet  Google Scholar 

  3. Davidov, J.: Harmonic almost Hermitian structures. Special metrics and group actions in geometry, 129-159, Springer INDAM Ser., 23, Springer, Cham (2017)

  4. Frehse, J.: A discontinuous solution of a mildly nonlinear elliptic system. Math. Z. 134(3), 229–230 (1973)

    Article  MathSciNet  Google Scholar 

  5. Gastel, A., Scheven, C.: Regularity of polyharmonic maps in the critical dimension. Commun. Anal. Geom. 17(2), 185–226 (2009)

    Article  MathSciNet  Google Scholar 

  6. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. vii+297 pp. Princeton University Press, Princeton, NJ (1983)

  7. He, W.: Energy minimizing almost complex structures. ArXiv e-prints (2019). arXiv:1907.12211 [math.DG]

  8. He, W.: Biharmonic almost complex structures. preprint, (2018)

  9. He, W., Jiang, R.: The regularity of a semilinear elliptic system with quadratic growth of gradient. J. Funct. Anal. 276(4), 1294–1312 (2019)

    Article  MathSciNet  Google Scholar 

  10. Hélein, F.: Régularié des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math. 312(8), 591–596 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Lamm, T., Rivière, T.: Conservation laws for fourth order systems in four dimensions. Commun. Partial Differ. Equ. 33(2), 245–262 (2008)

    Article  MathSciNet  Google Scholar 

  12. O’Neil, R.: Convolution operators and \(l(p, q)\) spaces. Duke Math. J. 30(1), 129–142 (1963)

    Article  MathSciNet  Google Scholar 

  13. Rivière, T.: Everywhere discontinuous harmonic maps into spheres. Acta Math. 175(2), 197–226 (1995)

    Article  MathSciNet  Google Scholar 

  14. Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22 (2007)

    Article  MathSciNet  Google Scholar 

  15. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Wang, C.: Biharmonic maps from \({\mathbb{R}}^4\) into a Riemannian manifold. Math. Z. 247(1), 65–87 (2004)

    Article  MathSciNet  Google Scholar 

  17. Wood, C.M.: Harmonic almost-complex structures. Composition Math. 99(2), 183–212 (1995)

    MathSciNet  MATH  Google Scholar 

  18. Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation. Springer, New York (1989)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiqi Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Weiyong He is partially supported by National Science Foundation (No. 1611797). Ruiqi Jiang is partially supported by National Natural Science Foundation of China (No. 11901181).

Appendix

Appendix

In this section, we will rewrite m-harmonic almost complex structure equation in a good divergence form in the spirit of [2] to prove Lemma 5. First we have the following,

Lemma 6

The Euler-Lagrange equation \([\varDelta ^{m}J,J]=0\) is equivalent to

$$\begin{aligned} \varDelta ^m J= \frac{1}{4} T_m\left( J,\nabla J, \cdots , \nabla ^{2m-1}J\right) \end{aligned}$$
(61)

where \(T_m=JQ_m+Q_mJ\) and

$$\begin{aligned} Q_m = \varDelta ^m\left( J^2\right) -\varDelta ^m J \,J- J\, \varDelta ^m J. \end{aligned}$$

Proof

This is a direct computation using the fact \(\varDelta (J^2)=0\). \(\square \)

Lemma 5 can be stated as follows,

Proposition 6

For \(m=2, 3\), \(T_m\) in Lemma 6 can be rewritten as

$$\begin{aligned} T_m=T_{\lambda _0} - \left[ J-\lambda _0, \left[ \varDelta ^m J, J\right] \right] \end{aligned}$$
(62)

where \(T_{\lambda _0}\) is a linear combination of the following terms

$$\begin{aligned} \nabla ^{\alpha }\bigg ((J-\lambda _{0})*\nabla ^{\beta }J*\nabla ^{\gamma }J\bigg ) \quad or\quad \lambda _0*\nabla ^{\alpha }\bigg ((J-\lambda _{0})*\nabla ^{\delta }J\bigg ), \end{aligned}$$

where \(\alpha ,\beta ,\gamma ,\delta \) are multi-indices such that \(1\le |\alpha | \le 2m-1\), \(0\le |\beta |,|\gamma |,|\delta |\le m\), \(|\alpha |+|\beta |+|\gamma |=2m\) and \(|\alpha |+|\delta |=2m\).

In what follows, we always assume J is a square matrix valued function and satisfies \(J^2=-id\). In this situation, we know \(\nabla \lambda _0=0\) for every constant matrix \(\lambda _0\). The reason for emphasizing this point is that if we consider the constant matrix \(\lambda _0 \) as a (1,1) tensor field on \((B_1,g)\), then (1, 2) tensor field \(\nabla \lambda _0\) might not be zero.

1.1 The case m=2: biharmonic almost complex structure

By the definition of \(T_m\) in Theorem 6, we have

$$\begin{aligned} T_2= J Q_2 + Q_2 J, \end{aligned}$$

where \(Q_2=2 \nabla \varDelta J \nabla J + 2\nabla J \nabla \varDelta J+ 2\varDelta J \varDelta J + 2 \varDelta ( \nabla J )^2.\) Set

$$\begin{aligned} {\mathbf {I}}&= J \big ( \nabla \varDelta J \nabla J + \nabla J \nabla \varDelta J \big ) + \big ( \nabla \varDelta J \nabla J + \nabla J \nabla \varDelta J \big ) J \\ \mathbf {II}&= J (\varDelta J)^2 + (\varDelta J)^2 J\\ \mathbf {III}&= J \varDelta ( \nabla J )^2 + \varDelta ( \nabla J )^2 J. \end{aligned}$$

Thus, we obtain \(T_2=2{\mathbf {I}}+2\mathbf {II}+2\mathbf {III}.\) Firstly, we compute the term \({\mathbf {I}}\):

$$\begin{aligned} {\mathbf {I}}&= J \nabla \varDelta J \nabla J + J \nabla J \nabla \varDelta J + \nabla \varDelta J \nabla J J+ \nabla J \nabla \varDelta J J \\&= J \nabla \varDelta J \nabla J - \nabla J J \nabla \varDelta J - \nabla \varDelta J J \nabla J + \nabla J \nabla \varDelta J J \\&= [J, \nabla \varDelta J] \nabla J + \nabla J [\nabla \varDelta J, J] \\&= [\nabla J, [\nabla \varDelta J, J]]. \end{aligned}$$

Since \(\nabla \bigg ( [\nabla \varDelta J, J] -[\varDelta J, \nabla J] \bigg )= [\varDelta ^2 J, J],\) we have

$$\begin{aligned}&\nabla [J -\lambda _0, [\nabla \varDelta J, J] -[\varDelta J, \nabla J]] \nonumber \\&\quad = [\nabla J, [\nabla \varDelta J, J] -[\varDelta J, \nabla J]]+ [J-\lambda _0, [\varDelta ^2 J, J]]. \end{aligned}$$
(63)

Now we compute the left-hand side of above equality:

$$\begin{aligned}&\nabla [J -\lambda _0, [\nabla \varDelta J, J] -[\varDelta J, \nabla J]] \\&\quad = \nabla [J -\lambda _0, \nabla [\varDelta J, J]] -2 \nabla [J -\lambda _0, [\varDelta J, \nabla J]] \\&\quad = \nabla [J -\lambda _0, \nabla [\varDelta J, J]]+ T_{\lambda _0}\\&\quad = \varDelta [J -\lambda _0, [\varDelta J, J]] - \nabla [\nabla J, [\varDelta J, J]] + T_{\lambda _0}\\&\quad = - \nabla [\nabla J, [\varDelta J, J]] + T_{\lambda _0}\\&\quad = - [\varDelta J, [\varDelta J, J]] -[\nabla J, [\nabla \varDelta J, J]] -[\nabla J, [\varDelta J, \nabla J]] + T_{\lambda _0} \end{aligned}$$

Substituting above equality into (63) yields

$$\begin{aligned} 2 {\mathbf {I}}= 2 [\nabla J, [\nabla \varDelta J, J]] = - [\varDelta J, [\varDelta J, J]] - [J-\lambda _0, [\varDelta ^2 J, J]] + T_{\lambda _0} \end{aligned}$$
(64)

We now turn to compute the term \(\mathbf {III}\). Since

$$\begin{aligned} J \varDelta (\nabla J)^2&= (J -\lambda _0 ) \varDelta (\nabla J)^2 + \lambda _0 \varDelta (\nabla J)^2 \\&= (J -\lambda _0 ) \varDelta (\nabla J)^2 + \lambda _0 \varDelta \nabla \big ( ( J -\lambda _0) \nabla J \big ) - \lambda _0 \varDelta \big ( (J-\lambda _0) \varDelta J \big ) \\&=(J -\lambda _0 ) \varDelta (\nabla J)^2 + T_{\lambda _0} \\&= \nabla _p \big ( (J -\lambda _0 ) \nabla _p (\nabla J)^2 \big ) -\nabla _p J \nabla _p (\nabla J)^2 + T_{\lambda _0} \\&= -\nabla _p J \nabla _p (\nabla J)^2 + T_{\lambda _0} \\&= -\nabla _p \big ( \nabla _p J (\nabla J)^2 \big ) + \varDelta J (\nabla J)^2 + T_{\lambda _0} \\&= \varDelta J (\nabla J)^2 + T_{\lambda _0} \end{aligned}$$

and similarly \(\varDelta (\nabla J)^2 J = (\nabla J)^2 \varDelta J + T_{\lambda _0},\) we have

$$\begin{aligned} \mathbf {III}= \varDelta J (\nabla J)^2 + (\nabla J)^2 \varDelta J + T_{\lambda _0} \end{aligned}$$
(65)

Now let us proceed to compute \(\mathbf {II}\):

$$\begin{aligned} \mathbf {II}&= J (\varDelta J)^2 + (\varDelta J)^2 J = - \big ( \varDelta J J + 2( \nabla J )^2 \big ) \varDelta J + \varDelta J \varDelta J J \\&= \varDelta J [\varDelta J, J] - 2 (\nabla J )^2 \varDelta J \end{aligned}$$

where we used the fact \(\varDelta (J^2)=0\) which implies

$$\begin{aligned} \varDelta J J=-J \varDelta J- 2 \nabla J \nabla J. \end{aligned}$$
(66)

On the other hand, we also have

$$\begin{aligned} \mathbf {II}&= J (\varDelta J)^2 + (\varDelta J)^2 J = J \varDelta J \varDelta J - \varDelta J \big ( J \varDelta J + 2 (\nabla J)^2 \big ) \\&= [J, \varDelta J] \varDelta J - 2 \varDelta J (\nabla J)^2 \end{aligned}$$

Hence, we obtain

$$\begin{aligned} 2 \mathbf {II}&= \varDelta J [\varDelta J, J]+ [J, \varDelta J] \varDelta J - 2\big ( (\nabla J )^2 \varDelta J+ \varDelta J (\nabla J)^2\big ) \nonumber \\&= [\varDelta J, [\varDelta J, J]] - 2(\nabla J )^2 \varDelta J-2 \varDelta J (\nabla J)^2 \nonumber \\&= [\varDelta J, [\varDelta J, J]] - 2 \mathbf {III} \end{aligned}$$
(67)

where in the last equality we used (65). Substituting (67) into (64), we get

$$\begin{aligned} T_2=2{\mathbf {I}}+ 2\mathbf {II} +2\mathbf {III} = T_{\lambda _0}-\left[ J-\lambda _0, \left[ \varDelta ^2 J, J\right] \right] \end{aligned}$$

which is the desired conclusion.

1.2 The Case m=3: 3-Harmonic Almost Complex Structure

By the definition of \(T_m\) in Theorem 6, we have

$$\begin{aligned} T_3= J Q_3 + Q_3 J, \end{aligned}$$

where

$$\begin{aligned} Q_3&= 2\nabla \varDelta ^{2}J\nabla J+2\nabla J\nabla \varDelta ^{2}J +\varDelta ^{2}J\varDelta J+\varDelta J\varDelta ^{2}J \nonumber \\&\quad +2\varDelta \big (\nabla \varDelta J\nabla J+\nabla J\nabla \varDelta J \big ) +2\varDelta \left( \varDelta J\right) ^{2}+2\varDelta ^{2}\left( \nabla J\right) ^{2}. \end{aligned}$$

For simplicity, we collect some terms which are \(T_{\lambda _0}\) type and appear frequently in the following proof.

Lemma 7

The following terms are \(T_{\lambda _0}\) type terms for any given constant matrix \(\lambda _0\):

$$\begin{aligned} \nabla \left( \nabla J*\nabla ^{2}J*\nabla ^{2}J\right) , \nabla ^{2}\left( \nabla J*\nabla J*\nabla ^{2}J\right) , \nabla \left( \nabla J*\nabla J*\nabla ^{3}J\right) , \nabla ^4 \left( \nabla J\right) ^2. \end{aligned}$$

Proof

For simplicity, we only show how to rewrite the first term and the third term. Other terms can be handled in much the same way. The first term:

$$\begin{aligned} \nabla \big (\nabla J*\nabla ^{2}J*\nabla ^{2}J \big )&=\nabla \left( \nabla \left( J-\lambda _{0}\right) *\nabla ^{2}J *\nabla ^{2}J \right) \\&=\nabla ^{2} \left( \left( J-\lambda _{0}\right) *\nabla ^{2}J *\nabla ^{2}J\right) -\nabla \left( \left( J-\lambda _{0}\right) *\nabla ^{3}J *\nabla ^{2}J \right) \\&\quad -\nabla \left( \left( J-\lambda _{0}\right) *\nabla ^{2}J *\nabla ^{3}J \right) \\&= T_{\lambda _0}. \end{aligned}$$

The third term:

$$\begin{aligned}&\nabla \big ( \nabla J *\nabla J *\nabla ^{3}J \big ) \\&\quad = \nabla ^2 \big ( \nabla J *\nabla J *\nabla ^2 J \big ) - \nabla \big ( \nabla ^2 J *\nabla J *\nabla ^{2}J \big ) -\nabla \big ( \nabla J *\nabla ^2 J *\nabla ^{2}J \big ) \\&\quad = T_{\lambda _0}. \end{aligned}$$

\(\square \)

Note that we will emphasize the terms of \(T_{\lambda _0}\) type by underlining it in the following proof. Set

$$\begin{aligned} {\mathbf {I}}&= \,J \nabla \varDelta ^{2} J \nabla J + J\nabla J \nabla \varDelta ^{2}J +\nabla \varDelta ^{2}J\nabla J\, J+\nabla J \nabla \varDelta ^{2}J \,J, \\ \mathbf {II}&= \, J \big (\varDelta ^{2}J\varDelta J+\varDelta J\varDelta ^{2}J \big ) +\big ( \varDelta ^{2}J\varDelta J+\varDelta J\varDelta ^{2}J \big )J, \\ \mathbf {III}&= \, J\varDelta \big ( \nabla \varDelta J\nabla J+\nabla J\nabla \varDelta J \big ) +\varDelta \big (\nabla \varDelta J\nabla J+\nabla J\nabla \varDelta J \big )J, \\ \mathbf {IV}&= \, J\varDelta \left( \varDelta J\right) ^{2} +\varDelta \left( \varDelta J\right) ^{2}J, \\ {\mathbf {V}}&= \, J\varDelta ^{2}\left( \nabla J\right) ^{2} +\varDelta ^{2}\left( \nabla J\right) ^{2}J. \end{aligned}$$

Then, we obtain \(T_3= 2{\mathbf {I}}+ \mathbf {II}+ 2\mathbf {III}+ 2\mathbf {IV}+ 2{\mathbf {V}}.\)

Step One: dealing with I. Now Let us compute the first term I:

$$\begin{aligned} {\mathbf {I}}&=J\nabla \varDelta ^{2}J\nabla J + J\nabla J\nabla \varDelta ^{2}J + \nabla \varDelta ^{2}J\nabla J J + \nabla J\nabla \varDelta ^{2}J J \\&=J\nabla \varDelta ^{2}J\nabla J-\nabla JJ\nabla \varDelta ^{2}J -\nabla \varDelta ^{2}JJ\nabla J + \nabla J\nabla \varDelta ^{2}J J \\&=\left[ J,\nabla \varDelta ^{2}J\right] \nabla J + \nabla J\left[ \nabla \varDelta ^{2}J,J\right] \\&=\left[ \nabla J,\left[ \nabla \varDelta ^{2}J,J\right] \right] , \end{aligned}$$

Since \(\nabla \bigg ([\nabla \varDelta ^{2}J,J]-[\varDelta ^{2}J,\nabla J] +[\nabla \varDelta J,\varDelta J] \bigg )=[\varDelta ^3 J, J],\) we have

$$\begin{aligned}&\nabla \left[ J-\lambda _{0},\left[ \nabla \varDelta ^{2}J,J\right] -\left[ \varDelta ^{2}J,\nabla J\right] +[\nabla \varDelta J,\varDelta J] \right] \nonumber \\&\quad = \big [\nabla J,\left[ \nabla \varDelta ^{2}J,J\right] -\left[ \varDelta ^{2}J,\nabla J\right] +[\nabla \varDelta J,\varDelta J]\big ] + \left[ J-\lambda _{0}, \left[ \varDelta ^3 J, J\right] \right] . \end{aligned}$$
(68)

Now we compute the left-hand side of above equality.

$$\begin{aligned}&\nabla \left[ J-\lambda _{0},\left[ \nabla \varDelta ^{2}J,J\right] -\left[ \varDelta ^{2}J,\nabla J\right] +\underline{[\nabla \varDelta J,\varDelta J]} \right] \\&\quad = \nabla \left[ J-\lambda _{0},\left[ \nabla \varDelta ^{2}J,J\right] -\left[ \varDelta ^{2}J,\nabla J\right] \right] +{T_{\lambda _0}}\\&\quad = \nabla [J-\lambda _{0},\nabla \left[ \varDelta ^{2}J,J\right] -2\left[ \varDelta ^{2}J,\nabla J\right] ] +{T_{\lambda _0}}\\&\quad = \varDelta \left[ J-\lambda _{0},[\varDelta ^{2}J,J]\right] - \nabla \big [\nabla J,[\varDelta ^{2}J,J]\big ] - 2\nabla [J-\lambda _{0},\left[ \varDelta ^{2}J,\nabla J\right] ] + T_{\lambda _0}\\&\quad = \varDelta \big [J-\lambda _{0},\nabla [\nabla \varDelta J,J] -\underline{[\nabla \varDelta J,\nabla J]}\big ]\\&\qquad -2\nabla _p \big [J-\lambda _{0},\nabla _q[\nabla _q\varDelta J,\nabla _p J] -\underline{\left[ \nabla _q\varDelta J,\nabla _{qp}^2 J\right] } \big ]\\&\qquad {-\nabla \left[ \nabla J,\left[ \varDelta ^{2}J,J\right] \right] }+ T_{\lambda _0}\\&\quad =\underline{\varDelta \nabla \left[ J-\lambda _{0},\left[ \nabla \varDelta J,J\right] \right] } -\varDelta [\nabla J,[\nabla \varDelta J,J]]\\&\qquad -2 \underline{\nabla _{pq}^{2} \big [ J-\lambda _{0},[\nabla _q \varDelta J,\nabla J] \big ]} +2 \underline{\nabla _{p}[\nabla _{q}J,[\nabla _{q}\varDelta J,\nabla _{p}J]]}\\&\qquad {-\nabla [\nabla J,[\varDelta ^{2}J,J]]}+T_{\lambda _0}\\&\quad = -\varDelta [\nabla J,[\nabla \varDelta J,J]] -\nabla [\nabla J,[\varDelta ^{2}J,J]]+ T_{\lambda _0}, \end{aligned}$$

where in the second equality from bottom we employ lemma 7. By substituting above equality into (68), we obtain

$$\begin{aligned} {\mathbf {I}}&= [\nabla J,[\nabla \varDelta ^{2}J,J]]\\&= [\nabla J,[\varDelta ^{2}J,\nabla J]]-[\nabla J,[\nabla \varDelta J,\varDelta J]]-\varDelta [\nabla J,[\nabla \varDelta J,J]]-\nabla \left[ \nabla J,\left[ \varDelta ^{2}J,J\right] \right] \\&\quad +{T_{\lambda _0}} - \left[ J-\lambda _0, \left[ \varDelta ^3 J, J\right] \right] . \end{aligned}$$

Since \(\nabla [\nabla J,[\varDelta ^{2}J,J]]=[\varDelta J,[\varDelta ^{2}J,J]]+[\nabla J,[\nabla \varDelta ^{2}J,J]]+[\nabla J,[\varDelta ^{2}J,\nabla J]],\) we deduce

$$\begin{aligned} 2{\mathbf {I}}&= -[\nabla J,[\nabla \varDelta J,\varDelta J]]-\varDelta [\nabla J,[\nabla \varDelta J,J]]-\left[ \varDelta J,\left[ \varDelta ^{2}J,J\right] \right] \nonumber \\&\quad +{T_{\lambda _0}}- \left[ J-\lambda _0, \left[ \varDelta ^3 J, J\right] \right] . \end{aligned}$$
(69)

By lemma 7, we can derive

$$\begin{aligned}&[\nabla J,[\nabla \varDelta J,\varDelta J]] \nonumber \\&= \nabla J\left( \nabla \varDelta J\varDelta J-\varDelta J\nabla \varDelta J\right) -\left( \nabla \varDelta J\varDelta J-\varDelta J\nabla \varDelta J\right) \nabla J \nonumber \\&= \nabla J\nabla \varDelta J\varDelta J+\varDelta J\nabla \varDelta J\nabla J -\nabla J\varDelta J\nabla \varDelta J-\nabla \varDelta J\varDelta J\nabla J \nonumber \\&= \underline{\nabla \left( \nabla J\varDelta J\varDelta J\right) } +\underline{\nabla \left( \varDelta J\varDelta J\nabla J\right) } -2\left( \varDelta J\right) ^{3} -2\nabla J\varDelta J\nabla \varDelta J -2\nabla \varDelta J\varDelta J\nabla J \nonumber \\&= -2\left( \varDelta J\right) ^{3} -2\nabla J\varDelta J\nabla \varDelta J -2\nabla \varDelta J\varDelta J\nabla J +{T_{\lambda _0}} \end{aligned}$$
(70)

and

$$\begin{aligned}&\varDelta [\nabla J,[\nabla \varDelta J,J]] \nonumber \\&\quad = \varDelta \big [\nabla J,\nabla [\varDelta J,J]-[\varDelta J,\nabla J] \big ] \nonumber \\&\quad = \varDelta [\nabla J,\nabla [\varDelta J,J]] -\underline{\varDelta [\nabla J,[\varDelta J,\nabla J]]} \nonumber \\&\quad = \underline{\varDelta \nabla [\nabla J,[\varDelta J,J]]} -\varDelta [\varDelta J,[\varDelta J,J]]+{T_{\lambda _0}}\nonumber \\&\quad = -\varDelta \left( \left( \varDelta J\right) ^{2}J+J\left( \varDelta J\right) ^{2}-2\varDelta JJ\varDelta J\right) +{T_{\lambda _0}} \nonumber \\&\quad = -\varDelta \left( 2\left( \varDelta J\right) ^{2}J +2J\left( \varDelta J\right) ^{2} +2\underline{\left( \nabla J\right) ^{2}\varDelta J} +2\underline{\varDelta J\left( \nabla J\right) ^{2}} \right) +T_{\lambda _0}\nonumber \\&\quad =-2\varDelta \left( \left( \varDelta J\right) ^{2}J+J\left( \varDelta J\right) ^{2}\right) +{T_{\lambda _0}}. \end{aligned}$$
(71)

where in the second equality from bottom we used (66). Substituting equalities (70) and (71) into equality (69) yields

$$\begin{aligned} 2{\mathbf {I}}&= 2\left( \varDelta J\right) ^{3}+2\nabla J\varDelta J\nabla \varDelta J+2\nabla \varDelta J\varDelta J\nabla J+2\varDelta \left( \left( \varDelta J\right) ^{2}J+J\left( \varDelta J\right) ^{2}\right) \nonumber \\&\quad -\left[ \varDelta J,\left[ \varDelta ^{2}J,J\right] \right] +{T_{\lambda _0}} - \left[ J-\lambda _0, \left[ \varDelta ^3 J, J\right] \right] . \end{aligned}$$
(72)

Step Two: dealing with V and II. Firstly, we deal with fifth term V. It follows from Lemma 7 that

$$\begin{aligned} {\mathbf {V}}&=J\varDelta ^{2}\left( \nabla J\right) ^{2}+\varDelta ^{2}\left( \nabla J\right) ^{2}J\\&=\left( J-\lambda _{0}\right) \varDelta ^{2}\left( \nabla J\right) ^{2} +\varDelta ^{2}\left( \nabla J\right) ^{2}\left( J-\lambda _{0}\right) +\underline{\lambda _{0}\varDelta ^{2}\left( \nabla J\right) ^{2}} +\underline{\varDelta ^{2}\left( \nabla J\right) ^{2}\lambda _{0}}\\&= \nabla \left( \left( J-\lambda _{0}\right) \nabla \varDelta \left( \nabla J\right) ^{2}\right) -\nabla J\nabla \varDelta \left( \nabla J\right) ^{2} \\&\quad +\nabla \left( \nabla \varDelta \left( \nabla J\right) ^{2}\left( J-\lambda _{0}\right) \right) -\nabla \varDelta \left( \nabla J\right) ^{2}\nabla J +{T_{\lambda _0}}\\&= \underline{\varDelta \bigg ((J-\lambda _{0})\varDelta (\nabla J)^{2}\bigg )} -\nabla \left( \nabla J\varDelta \left( \nabla J\right) ^{2}\right) -\nabla J\nabla \varDelta \left( \nabla J\right) ^{2} \\&\quad + \underline{\varDelta \bigg (\varDelta (\nabla J)^{2}(J-\lambda _{0})\bigg )} -\nabla \left( \varDelta \left( \nabla J\right) ^{2}\nabla J\right) -\nabla \varDelta \left( \nabla J\right) ^{2}\nabla J +{T_{\lambda _0}}\\&=-\nabla \left( \nabla J\varDelta \left( \nabla J\right) ^{2}\right) -\nabla J\nabla \varDelta \left( \nabla J\right) ^{2} -\nabla \left( \varDelta \left( \nabla J\right) ^{2}\nabla J\right) \\&\quad -\nabla \varDelta \left( \nabla J\right) ^{2}\nabla J +{T_{\lambda _0}}. \end{aligned}$$

Since

$$\begin{aligned} \nabla _{p}\bigg (\nabla _{p}J\varDelta \left( \nabla J\right) ^{2}\bigg ) =\nabla _{pq}^2\bigg (\nabla _{p}J\nabla _{q}\left( \nabla J\right) ^{2}\bigg ) -\nabla _{p}\bigg ( \nabla _{qp}^{2}J\nabla _{q}\left( \nabla J\right) ^{2}\bigg ) ={T_{\lambda _0}} \end{aligned}$$

and

$$\begin{aligned} \nabla _{p}J\nabla _{p}\varDelta \left( \nabla J\right) ^{2}&=\underline{\nabla _{p}\bigg (\nabla _{p}J\varDelta \left( \nabla J\right) ^{2}\bigg )} -\varDelta J\varDelta \left( \nabla J\right) ^{2}\\&=-\underline{\nabla _{p}\left( \varDelta J\nabla _{p}\left( \nabla J\right) ^{2}\right) } +\nabla _{p}\varDelta J\nabla _{p}\left( \nabla J\right) ^{2}+{T_{\lambda _0}}\\&=\underline{\nabla _{p}\left( \nabla _{p}\varDelta J\left( \nabla J\right) ^{2}\right) } -\varDelta ^{2}J\left( \nabla J\right) ^{2} +{T_{\lambda _0}}\\&=-\varDelta ^{2}J\left( \nabla J\right) ^{2}+{T_{\lambda _0}}, \end{aligned}$$

we have

$$\begin{aligned} {\mathbf {V}}=\varDelta ^{2}J\left( \nabla J\right) ^{2}+\left( \nabla J\right) ^{2}\varDelta ^{2}J+{T_{\lambda _0}}. \end{aligned}$$
(73)

Next, we deal with the second term

$$\begin{aligned} \mathbf {II}&=J\left( \varDelta ^{2}J\varDelta J+\varDelta J\varDelta ^{2}J\right) +\left( \varDelta ^{2}J\varDelta J+\varDelta J\varDelta ^{2}J\right) J\nonumber \\&=\left[ \varDelta J,\left[ \varDelta ^{2}J,J\right] \right] -2\left( \nabla J\right) ^{2}\varDelta ^{2}J-2\varDelta ^{2}J\left( \nabla J\right) ^{2} \nonumber \\&=\left[ \varDelta J,\left[ \varDelta ^{2}J,J\right] \right] -2{\mathbf {V}}+T_{\lambda _0}, \end{aligned}$$
(74)

where we have used (66) and (73).

Step Three: dealing with III Here we begin to deal with the third term:

$$\begin{aligned} \mathbf {III}&=J\varDelta \bigg (\nabla \varDelta J\nabla J+\nabla J\nabla \varDelta J\bigg ) +\varDelta \bigg (\nabla \varDelta J\nabla J+\nabla J\nabla \varDelta J\bigg )J\\&=J\varDelta \left( \nabla \big (\varDelta J\nabla J+\nabla J\varDelta J\big ) -2\left( \varDelta J\right) ^{2}\right) \\&\quad \, +\varDelta \left( \nabla \big (\varDelta J\nabla J+\nabla J\varDelta J\big ) -2\left( \varDelta J\right) ^{2}\right) J\\&=J\varDelta \nabla \bigg (\varDelta J\nabla J+\nabla J\varDelta J\bigg ) +\varDelta \nabla \bigg (\varDelta J\nabla J+\nabla J\varDelta J\bigg )J\\&\quad \, -2\left( J\varDelta \left( \varDelta J\right) ^{2} +\varDelta \left( \varDelta J\right) ^{2}J \right) \\&=J\varDelta \nabla \bigg (\varDelta J\nabla J+\nabla J\varDelta J\bigg ) +\varDelta \nabla \bigg (\varDelta J\nabla J+\nabla J\varDelta J\bigg )J -2\mathrm {\mathbf {IV}}. \end{aligned}$$

Since

$$\begin{aligned}&J\varDelta \nabla \big (\varDelta J\nabla J\big ) \\&= \big (J-\lambda _{0}\big )\varDelta \nabla \left( \varDelta J\nabla J\right) +\lambda _{0}\varDelta \nabla \left( \varDelta J\nabla J\right) \\&= \left( J-\lambda _{0}\right) \varDelta \nabla \left( \varDelta J\nabla J\right) +\underline{\lambda _{0}\varDelta \nabla \bigg (\nabla \left( \varDelta J\big (J-\lambda _{0}\big )\right) -\nabla \varDelta J\big (J-\lambda _{0}\big )\bigg )}\\&= \left( J-\lambda _{0}\right) \varDelta \nabla \big (\varDelta J\nabla J\big ) +{T_{\lambda _0}}\\&= \nabla _p \bigg ( (J-\lambda _0) \nabla ^2_{pq} \big ( \varDelta J \nabla _q J\big )\bigg ) -\nabla _p J \nabla ^2_{pq} \big ( \varDelta J \nabla _q J\big ) +{T_{\lambda _0}}\\&= \underline{\varDelta \bigg ( (J-\lambda _0) \nabla _q \big (\varDelta J \nabla _q J \big )\bigg )} -\underline{\nabla _p \bigg ( \nabla _p J \nabla _q \big ( \varDelta J \nabla _q J\big )\bigg )} \\&\quad -\nabla _p J \nabla ^2_{pq} \big ( \varDelta J \nabla _q J\big ) +{T_{\lambda _0}}\\&= - \underline{\nabla _p \bigg ( \nabla _p J \nabla _q \big (\varDelta J \nabla _q J \big )\bigg )} + \varDelta J \nabla _q \big ( \varDelta J \nabla _q J \big ) +{T_{\lambda _0}}\\&= \underline{\nabla _q \bigg ( \varDelta J \varDelta J \nabla _q J \bigg )} -\nabla \varDelta J \varDelta J \nabla J +{T_{\lambda _0}}\\&= -\nabla \varDelta J\varDelta J\nabla J+{T_{\lambda _0}}, \end{aligned}$$

we have

$$\begin{aligned} \mathbf {III}&= -\nabla \varDelta J\bigg (\varDelta J\nabla J+\nabla J\varDelta J\bigg ) -\bigg (\varDelta J\nabla J+\nabla J\varDelta J\bigg )\nabla \varDelta J -2\mathbf {IV}+{T_{\lambda _0}}\nonumber \\&= -\nabla \varDelta J\varDelta J\nabla J-\nabla J\varDelta J\nabla \varDelta J -\bigg (\nabla \varDelta J\nabla J\varDelta J+\varDelta J\nabla J\nabla \varDelta J\bigg ) \nonumber \\&\quad -2\mathbf {IV}+{T_{\lambda _0}}\nonumber \\&= -\nabla \varDelta J\varDelta J\nabla J -\nabla J\varDelta J\nabla \varDelta J -\underline{\nabla \big (\varDelta J\nabla J\varDelta J \big )} +(\varDelta J)^{3} -2\mathbf {IV}+{T_{\lambda _0}}\nonumber \\&= -\nabla \varDelta J\varDelta J\nabla J-\nabla J\varDelta J\nabla \varDelta J+\left( \varDelta J\right) ^{3}-2\mathbf {IV}+{T_{\lambda _0}}. \end{aligned}$$
(75)

Step Four: dealing with IV Since

$$\begin{aligned} J\varDelta \left( \varDelta J\right) ^{2}&=\nabla _{p}\left( J\nabla _{p}\left( \varDelta J\right) ^{2}\right) -\nabla _{p}J\nabla _{p}\left( \varDelta J\right) ^{2}\\&=\varDelta \left( J\left( \varDelta J\right) ^{2}\right) -\underline{\nabla _{p}\left( \nabla _{p}J\left( \varDelta J\right) ^{2}\right) } -\nabla _{p}J\nabla _{p}\left( \varDelta J\right) ^{2}\\&=\varDelta \left( J\left( \varDelta J\right) ^{2}\right) -\underline{\nabla _{p}\left( \nabla _{p}J\left( \varDelta J\right) ^{2}\right) } +\left( \varDelta J\right) ^{3} +{T_{\lambda _0}}\\&=\varDelta \left( J\left( \varDelta J\right) ^{2}\right) +\left( \varDelta J\right) ^{3}+{T_{\lambda _0}}, \end{aligned}$$

we have

$$\begin{aligned} \mathbf {IV}&=J\varDelta \left( \varDelta J\right) ^{2}+\varDelta \left( \varDelta J\right) ^{2}J\nonumber \\&=\varDelta \bigg (J\left( \varDelta J\right) ^{2}+\left( \varDelta J\right) ^{2}J\bigg ) +2\left( \varDelta J\right) ^{3} +{T_{\lambda _0}}. \end{aligned}$$
(76)

Step Five: divergence forms of nonlinearity Combining the equalities (72), (74), (75) and (76), we derive that

$$\begin{aligned} 2{\mathbf {I}}+\mathbf {II}+2\mathbf {III}+2\mathbf {IV}+2{\mathbf {V}}=T_{\lambda _0}, \end{aligned}$$

which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Jiang, R. Polyharmonic Almost Complex Structures. J Geom Anal 31, 11648–11684 (2021). https://doi.org/10.1007/s12220-021-00695-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00695-0

Keywords

Mathematics Subject Classification

Navigation