Skip to main content
Log in

PBWD bases and shuffle algebra realizations for \(U_{\varvec{v}}(L\mathfrak {sl}_n), U_{{\varvec{v}}_1,{\varvec{v}}_2}(L\mathfrak {sl}_n), U_{\varvec{v}}(L\mathfrak {sl}(m|n))\) and their integral forms

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We construct a family of PBWD (Poincaré–Birkhoff–Witt–Drinfeld) bases for the quantum loop algebras \(U_{\varvec{v}}(L\mathfrak {sl}_n),U_{{\varvec{v}}_1,{\varvec{v}}_2}(L\mathfrak {sl}_n),U_{\varvec{v}}(L\mathfrak {sl}(m|n))\) in the new Drinfeld realizations. In the 2-parameter case, this proves  (Hu et al. in Commun Math Phys 278(2):453–486, 2008, Theorem 3.11) (stated in loc. cit. without a proof), while in the super case it proves a conjecture of Zhang (Math. Z. 278(3–4):663–703, 2014). The main ingredient in our proofs is the interplay between those quantum loop algebras and the corresponding shuffle algebras, which are trigonometric counterparts of the elliptic shuffle algebras of Feigin and Odesskii (Anal. i Prilozhen 23(3):45–54, 1989; Anal i Prilozhen 31(3):57–70, 1997; Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000). NATO Sci Ser II Math Phys Chem, vol 35, Kluwer Academic Publishers, Dordrecht, pp 123–137, 2001). Our approach is similar to that of Enriquez (J Lie Theory 13(1):21–64, 2003) in the formal setting, but the key novelty is an explicit shuffle algebra realization of the corresponding algebras, which is of independent interest. This also allows us to strengthen the above results by constructing a family of PBWD bases for the RTT forms of those quantum loop algebras as well as for the Lusztig form of \(U_{\varvec{v}}(L\mathfrak {sl}_n)\). The rational counterparts provide shuffle algebra realizations of type A (super) Yangians and their Drinfeld–Gavarini dual subalgebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. It should be noted right away that these forms can be defined over \({\mathbb {Z}}[{\varvec{v}},{\varvec{v}}^{-1}]\) and \({\mathbb {Z}}[{\varvec{v}}_1,{\varvec{v}}_2,{\varvec{v}}^{-1}_1,{\varvec{v}}^{-1}_2]\), respectively, and all our results for the integral forms generalize verbatim to this setting as well.

  2. These are trigonometric counterparts of the elliptic shuffle algebras of Feigin–Odesskii [12,13,14].

  3. Following [12,13,14] the role of the wheel conditions is exactly to replace complicated Serre relations.

  4. In the formal setup (when working over \({\mathbb {C}}[[\hbar ]]\) rather than over \({\mathbb {C}}({\varvec{v}})\)), this goes back to [10, Corollary 1.4].

  5. One of the benefits of our proof is that it will be directly generalized to establish the isomorphisms of Theorems 4.10 and 5.18 below, for which no analogue of [31, Theorem 1.1] is known at the moment.

  6. As pointed out in the introduction, the linear independence can be deduced from the general arguments based on the flatness of the deformation and the PBW property of \(U(\mathfrak {sl}_n[t,t^{-1}])\). However, the specialization maps of (3.7) and formulas (3.183.19) will be used below to prove that \(\{e_h\}_{h\in H}\) span \(U^>_{\varvec{v}}(L\mathfrak {sl}_n)\). We will use the same approach for two-parameter quantum loop algebra, for which the general arguments do not apply.

  7. This can be checked by treating each of the following cases separately: \(j=j'=i=i'\), \(j=j'=i<i'\), \(j=j'<i=i'\), \(j=j'<i<i'\), \(j<j'\le i'<i\), \(j<j'<i'=i\), \(j<j'<i<i'\), \(j=i<j'=i'\), \(j=i<j'<i'\), \(j<j'=i=i'\), \(j<j'=i<i'\), \(j<i<j'\le i'\), where we set \(j:=j(\beta ),j':=j(\beta '),i:=i(\beta ),i':=i(\beta ')\).

  8. To be more precise, this recovers the algebra of loc.cit. with the trivial central charges.

  9. To be more precise, one actually needs to use the classical Lie superalgebra \(A(m-1,n-1)\) in place of \(\mathfrak {sl}(m|n)\), which do coincide when \(m\ne n\). However, we shall ignore this difference, since we will be working only with the positive subalgebras and those are isomorphic: \(U^>_{\varvec{v}}(L\mathfrak {sl}(m|n))\simeq U^>_{\varvec{v}}(LA(m-1,n-1))\).

  10. See [17, Appendix B] for a correction of a gap in the proof of [28].

References

  1. Beck, J.: Convex bases of PBW type for quantum affine algebras. Commun. Math. Phys. 165(1), 193–199 (1994)

    Article  MathSciNet  Google Scholar 

  2. Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165(3), 555–568 (1994)

    Article  MathSciNet  Google Scholar 

  3. Benkart, G., Witherspoon, S.: Two-parameter quantum groups and Drinfel’d doubles. Algebr. Represent. Theory 7(3), 261–286 (2004)

    Article  MathSciNet  Google Scholar 

  4. Benkart, G., Witherspoon, S.: Representations of two-parameter quantum groups and Schur–Weyl duality. Hopf algebras. Lecture Notes in Pure and Applied Mathematics, vol. 237, pp. 65–92. Dekker, New York (2004)

  5. Chari, V., Pressley, A.: Quantum affine algebras at roots of unity. Represent. Theory 1, 280–328 (1997)

    Article  MathSciNet  Google Scholar 

  6. Damiani, I.: Drinfeld realization of affine quantum algebras: the relations. Publ. Res. Inst. Math. Sci. 48(3), 661–733 (2012)

    Article  MathSciNet  Google Scholar 

  7. Drinfeld, V.: A New realization of Yangians and quantized affine algebras. Sov. Math. Dokl. 36(2), 212–216 (1988)

    Google Scholar 

  8. Drinfeld, V.: Quantum groups. In: Proceedings of the International Congress of Mathematician (Berkeley, 1986), pp. 798–820. American Mathematical Society, Providence (1987)

  9. Ding, J., Frenkel, I.: Isomorphism of two realizations of quantum affine algebra \(U_q(\widehat{{\mathfrak{gl}}(n)})\). Commun. Math. Phys. 156(2), 277–300 (1993)

    Article  Google Scholar 

  10. Enriquez, B.: PBW and duality theorems for quantum groups and quantum current algebras. J. Lie Theory 13(1), 21–64 (2003)

    MathSciNet  MATH  Google Scholar 

  11. Feigin, B., Hashizume, K., Hoshino, A., Shiraishi, J., Yanagida, S.: A commutative algebra on degenerate \({\mathbb{CP}}^{1}\) and Macdonald polynomials. J. Math. Phys. 50(9), 095215 (2009)

    Article  MathSciNet  Google Scholar 

  12. Feigin, B., Odesskii, A.: Sklyanin’s elliptic algebras, (Russian) Funktsional. Anal. i Prilozhen. 23(3), 45–54 (1989); translation in Funct. Anal. Appl. 23(3), 207–214 (1989)

  13. Feigin, B., Odesskii, A.: Elliptic deformations of current algebras and their representations by difference operators, (Russian). Funktsional. Anal. i Prilozhen. 31(3), 57–70 (1997); translation in Funct. Anal. Appl. 31(3), 193–203 (1997)

  14. Feigin, B., Odesskii, A.: Quantized moduli spaces of the bundles on the elliptic curve and their applications. In: Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, 2000), pp. 123–137; NATO Sci. Ser. II Math. Phys. Chem. 35. Kluwer Academic Publishers, Dordrecht (2001)

  15. Faddeev, L., Reshetikhin, N., Takhtadzhyan, L.: Quantization of Lie groups and Lie algebras, (Russian). Algebra i Analiz 1(1), 178–206 (1989); translation in Leningrad Math. J. 1(1), 193–225 (1990)

  16. Finkelberg, M., Tsymbaliuk, A.: Multiplicative slices, relativistic Toda and shifted quantum affine algebras, Representations and Nilpotent Orbits of Lie Algebraic Systems (special volume in honour of the 75th birthday of Tony Joseph). Prog. Math. 330, 133–304 (2019)

    Article  Google Scholar 

  17. Finkelberg, M., Tsymbaliuk, A.: Shifted quantum affine algebras: integral forms in type \(A\) (with appendices by A. Tsymbaliuk, A. Weekes). Arnold Math. J. 5(2–3), 197–283 (2019)

    Article  MathSciNet  Google Scholar 

  18. Gavarini, F.: The quantum duality principle. Ann. Inst. Fourier (Grenoble) 52(3), 809–834 (2002)

    Article  MathSciNet  Google Scholar 

  19. Gow, L.: Gauss decomposition of the Yangian \(Y({\mathfrak{gl}}_{m|n})\). Commun. Math. Phys. 276(3), 799–825 (2007)

    Article  Google Scholar 

  20. Grojnowski, I.: Affinizing quantum algebras: from \(D\)-modules to \(K\)-theory, unpublished manuscript of November 11, 1994. https://www.dpmms.cam.ac.uk/~groj/char.ps (1994)

  21. Hernandez, D.: Representations of quantum affinizations and fusion product. Transform. Groups 10(2), 163–200 (2005)

    Article  MathSciNet  Google Scholar 

  22. Hu, N., Rosso, M., Zhang, H.: Two-parameter quantum affine algebra \(U_{r,s}({\widehat{\mathfrak{sl}}}_n)\), Drinfel’d realization and quantum affine Lyndon basis. Commun. Math. Phys. 278(2), 453–486 (2008)

    Article  Google Scholar 

  23. Jing, N.: On Drinfeld realization of quantum affine algebras. The Monster and Lie Algebras (Columbus, OH, 1996), pp. 195–206. Ohio State Univ. Math. Res. Inst. Publ., 7. de Gruyter, Berlin (1998)

  24. Jing, N., Liu, M.: \(R\)-matrix realization of two-parameter quantum affine algebra \(U_{r,s}({\widehat{\mathfrak{gl}}}_n)\). J. Algebra 488, 1–28 (2017)

    Article  MathSciNet  Google Scholar 

  25. Jing, N., Misra, K., Yamane, H.: Kostant–Lusztig \({\mathbb{A}}\)-bases of multiparameter quantum groups. Contemp. Math. 713, 149–164 (2018)

  26. Jing, N., Zhang, H.: Two-parameter quantum vertex representations via finite groups and the McKay correspondence. Trans. Am. Math. Soc. 363(7), 3769–3797 (2011)

    Article  MathSciNet  Google Scholar 

  27. Jing, N., Zhang, H.: Two-parameter twisted quantum affine algebras. J. Math. Phys. 57(9), 091702 (2016)

    Article  MathSciNet  Google Scholar 

  28. Levendorskii, S.: On PBW bases for Yangians. Lett. Math. Phys. 27(1), 37–42 (1993)

    Article  MathSciNet  Google Scholar 

  29. Lusztig, G.: Quantum groups at roots of \(1\). Geom. Dedicata. 35(1–3), 89–113 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Nazarov, M.: Quantum Berezinian and the classical Capelli identity. Lett. Math. Phys. 21(2), 123–131 (1991)

    Article  MathSciNet  Google Scholar 

  31. Negut, A.: Quantum toroidal and shuffle algebras, preprint.arXiv:1302.6202v4

  32. Stukopin, V.: Yangians of Lie superalgebras of type \(A(m,n)\), (Russian). Funktsional. Anal. i Prilozhen. 28(3), 85–88 (1994); translation in Funct. Anal. Appl. 28(3), 217–219 (1994)

  33. Tsymbaliuk, A.: Shuffle algebra realizations of type \(A\) super Yangians and quantum affine superalgebras for all Cartan data. Lett. Math. Phys. 110(8), 2083–2111 (2020)

    Article  MathSciNet  Google Scholar 

  34. Tsymbaliuk, A.: Duality of Lusztig and RTT integral forms of \(U_(L{\mathfrak{sl}}_n)\). J. Pure Appl. Algebra 225(1), 106469 (2021)

  35. Takeuchi, M.: A two-parameter quantization of \(GL(n)\) (summary). Proc. Jpn Acad. Ser. A Math. Sci. 66(5), 112–114 (1990)

    Article  MathSciNet  Google Scholar 

  36. Yamane, H.: On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras. Publ. Res. Inst. Math. Sci. 35(3), 321–390 (1999)

    Article  MathSciNet  Google Scholar 

  37. Zhang, H.: Representations of quantum affine superalgebras. Math. Z. 278(3–4), 663–703 (2014)

    Article  MathSciNet  Google Scholar 

  38. Zhang, H.: Drinfeld realisation of quantum affine algebras, notes from the workshop on Yangians and Quantum Loop Algebras held in Austin, TX (2014)

  39. Zhang, H.: RTT realization of quantum affine superalgebras and tensor products. Int. Math. Res. Not. IMRN 4, 1126–1157 (2016)

    Article  MathSciNet  Google Scholar 

  40. Zhang, R.: The \({\mathfrak{gl}}(M|N)\) super Yangian and its finite-dimensional representations. Lett. Math. Phys. 37(4), 419–434 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I am indebted to Pavel Etingof, Boris Feigin, Michael Finkelberg, and Andrei Neguţ for numerous stimulating discussions over the years; to Naihuan Jing for a useful correspondence on two-parameter quantum algebras; to Luan Bezerra and Evgeny Mukhin for a useful correspondence on the quantum affine superalgebras; to anonymous referees for extremely useful suggestions which significantly improved the overall exposition. I am also grateful to MPIM (Bonn, Germany), IPMU (Kashiwa, Japan), and RIMS (Kyoto, Japan) for the hospitality and wonderful working conditions in the summer 2018 when the first stages of this project were performed. I would like to thank Tomoyuki Arakawa and Todor Milanov for their invitations to RIMS and IPMU, respectively. I gratefully acknowledge NSF Grants DMS-1821185, DMS-2001247, and DMS-2037602.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Tsymbaliuk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsymbaliuk, A. PBWD bases and shuffle algebra realizations for \(U_{\varvec{v}}(L\mathfrak {sl}_n), U_{{\varvec{v}}_1,{\varvec{v}}_2}(L\mathfrak {sl}_n), U_{\varvec{v}}(L\mathfrak {sl}(m|n))\) and their integral forms. Sel. Math. New Ser. 27, 35 (2021). https://doi.org/10.1007/s00029-021-00634-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00634-5

Keywords

Navigation