Skip to main content
Log in

Huge permittivity and premature metallicity in Bi2O2Se single crystals

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Bi2O2Se is a promising material for next-generation semiconducting electronics. It exhibits premature metallicity on the introduction of a tiny amount of electrons, the physics behind which remains elusive. Here we report on transport and dielectric measurements in Bi2O2Se single crystals at various carrier densities. The temperature-dependent resistivity (ρ) indicates a smooth evolution from the semiconducting to the metallic state. The critical concentration for the metal-insulator transition (MIT) to occur is extraordinarily low (nc∼1016 cm−3). The relative permittivity of the insulating sample is huge (ϵr ≈ 155(10)) and varies slowly with temperature. Combined with the light effective mass, a long effective Bohr radius (a *B ≈ 36(2)) is derived, which provides a reasonable interpretation of the metallic prematurity according to Mott’s criterion for MITs. The high electron mobility (µ) at low temperatures may result from the screening of ionized scattering centers due to the huge r. Our findings shed light on the electron dynamics in two dimensional (2D) Bi2O2Se devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Boller, Monatsh. Chem. 104, 916 (1973).

    Article  Google Scholar 

  2. J. X. Wu, H. T. Yuan, M. M. Meng, C. Chen, Y. Sun, Z. Y. Chen, W. H. Dang, C. W. Tan, Y. J. Liu, J. B. Yin, Y. B. Zhou, S. Y. Huang, H. Q. Xu, Y. Cui, H. Y. Hwang, Z. F. Liu, Y. L. Chen, B. H. Yan, and H. L. Peng, Nat. Nanotech. 12, 530 (2017).

    Article  ADS  Google Scholar 

  3. C. Chen, M. X. Wang, J. X. Wu, H. X. Fu, H. F. Yang, Z. Tian, T. Tu, H. Peng, Y. Sun, X. Xu, J. Jiang, N. B. M. Schröter, Y. W. Li, D. Pei, S. Liu, S. A. Ekahana, H. T. Yuan, J. M. Xue, G. Li, J. F. Jia, Z. K. Liu, B. H. Yan, H. Peng, and Y. L. Chen, Sci. Adv. 4, eaat8355 (2018).

    Article  ADS  Google Scholar 

  4. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotech. 6, 147 (2011).

    Article  ADS  Google Scholar 

  5. Q. D. Fu, C. Zhu, X. X. Zhao, X. L. Wang, A. Chaturvedi, C. Zhu, X. W. Wang, Q. S. Zeng, J. D. Zhou, F. C. Liu, B. K. Tay, H. Zhang, S. J. Pennycook, and Z. Liu, Adv. Mater. 31, 1804945 (2019).

    Article  Google Scholar 

  6. Y. Sun, J. Zhang, S. Ye, J. Song, and J. L. Qu, Adv. Funct. Mater. 30, 2004480 (2020).

    Article  Google Scholar 

  7. Z. Y. Zhang, T. R. Li, Y. J. Wu, Y. J. Jia, C. W. Tan, X. T. Xu, G. R. Wang, J. Lv, W. Zhang, Y. H. He, J. Pei, C. Ma, G. Q. Li, H. Z. Xu, L. P. Shi, H. L. Peng, and H. L. Li, Adv. Mater. 31, 1805769 (2019).

    Article  Google Scholar 

  8. C. W. Tan, M. Tang, J. X. Wu, Y. N. Liu, T. R. Li, Y. Liang, B. Deng, Z. J. Tan, T. Tu, Y. C. Zhang, C. Liu, J. H. Chen, Y. Wang, and H. L. Peng, Nano Lett. 19, 2148 (2019).

    Article  ADS  Google Scholar 

  9. T. R. Li, T. Tu, Y. W. Sun, H. X. Fu, J. Yu, L. Xing, Z. Wang, H. M. Wang, R. D. Jia, J. X. Wu, C. W. Tan, Y. Liang, Y. C. Zhang, C. C. Zhang, Y. M. Dai, C. G. Qiu, M. Li, R. Huang, L. Y. Jiao, K. J. Lai, B. H. Yan, P. Gao, and H. L. Peng, Nat. Electron. 3, 473 (2020).

    Article  Google Scholar 

  10. J. H. Ying, J. B. He, G. Yang, M. L. Liu, H. Z. Lyu, X. Zhang, H. Y. Liu, K. Zhao, R. Y. Jiang, Z. Q. Ji, J. Fan, C. L. Yang, X. N. Jing, G. T. Liu, X. W. Cao, X. F. Wang, L. Lu, and F. M. Qu, Nano Lett. 20, 2569 (2020), arXiv: 2004.04311.

    Article  ADS  Google Scholar 

  11. C. C. Zhang, J. X. Wu, Y. W. Sun, C. W. Tan, T. R. Li, T. Tu, Y. C. Zhang, Y. Liang, X. H. Zhou, P. Gao, and H. L. Peng, J. Am. Chem. Soc. 142, 2726 (2020).

    Article  Google Scholar 

  12. J. X. Wu, Y. J. Liu, Z. J. Tan, C. W. Tan, J. B. Yin, T. R. Li, T. Tu, and H. L. Peng, Adv. Mater. 29, 1704060 (2017).

    Article  Google Scholar 

  13. J. Li, Z. X. Wang, Y. Wen, J. W. Chu, L. Yin, R. Q. Cheng, L. Lei, P. He, C. Jiang, L. P. Feng, and J. He, Adv. Funct. Mater. 28, 1706437 (2018).

    Article  Google Scholar 

  14. U. Khan, Y. T. Luo, L. Tang, C. J. Teng, J. M. Liu, B. L. Liu, and H. M. Cheng, Adv. Funct. Mater. 29, 1807979 (2019).

    Article  Google Scholar 

  15. T. Tong, Y. F. Chen, S. C. Qin, W. S. Li, J. R. Zhang, C. H. Zhu, C. C. Zhang, X. Yuan, X. Q. Chen, Z. H. Nie, X. R. Wang, W. D. Hu, F. Q. Wang, W. Q. Liu, P. Wang, X. F. Wang, R. Zhang, and Y. B. Xu, Adv. Funct. Mater. 29, 1905806 (2019).

    Article  Google Scholar 

  16. L. Pan, L. Zhao, X. X. Zhang, C. C. Chen, P. P. Yao, C. L. Jiang, X. D. Shen, Y. N. Lyu, C. H. Lu, L. D. Zhao, and Y. F. Wang, ACS Appl. Mater. Interfaces 11, 21603 (2019).

    Article  Google Scholar 

  17. M. M. Meng, S. Y. Huang, C. W. Tan, J. X. Wu, Y. M. Jing, H. L. Peng, and H. Q. Xu, Nanoscale 10, 2704 (2018).

    Article  Google Scholar 

  18. M. M. Meng, S. Y. Huang, C. W. Tan, J. X. Wu, X. B. Li, H. L. Peng, and H. Q. Xu, Nanoscale 11, 10622 (2019).

    Article  Google Scholar 

  19. J. L. Wang, J. Wu, T. Wang, Z. K. Xu, J. F. Wu, W. H. Hu, Z. Ren, S. Liu, K. Behnia, and X. Lin, Nat. Commun. 11, 3846 (2020), arXiv: 2003.11697.

    Article  ADS  Google Scholar 

  20. P. Li, A. Han, C. H. Zhang, X. He, J. W. Zhang, D. X. Zheng, L. Cheng, L. J. Li, G. X. Miao, and X. X. Zhang, ACS Nano 14, 11319 (2020).

    Article  Google Scholar 

  21. G. A. Thomas, A. Kawabata, Y. Ootuka, S. Katsumoto, S. Kobayashi, and W. Sasaki, Phys. Rev. B 26, 2113 (1982).

    Article  ADS  Google Scholar 

  22. T. F. Rosenbaum, R. F. Milligan, M. A. Paalanen, G. A. Thomas, R. N. Bhatt, and W. Lin, Phys. Rev. B 27, 7509 (1983).

    Article  ADS  Google Scholar 

  23. Y. Y. Lv, L. Xu, S. T. Dong, Y. C. Luo, Y. Y. Zhang, Y. B. Chen, S. H. Yao, J. Zhou, Y. Cui, S. T. Zhang, M. H. Lu, and Y. F. Chen, Phys. Rev. B 99, 195143 (2019).

    Article  ADS  Google Scholar 

  24. T. Liang, Q. Gibson, M. N. Ali, M. Liu, R. J. Cava, and N. P. Ong, Nat. Mater. 14, 280 (2015), arXiv: 1404.7794.

    Article  ADS  Google Scholar 

  25. X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Phys. Rev. X 5, 031023 (2015), arXiv: 1503.01304.

    Google Scholar 

  26. T. Tong, M. H. Zhang, Y. Q. Chen, Y. Li, L. M. Chen, J. R. Zhang, F. Q. Song, X. F. Wang, W. Q. Zou, Y. B. Xu, and R. Zhang, Appl. Phys. Lett. 113, 072106 (2018).

    Article  ADS  Google Scholar 

  27. J. X. Wu, C. G. Qiu, H. X. Fu, S. L. Chen, C. C. Zhang, Z. P. Dou, C. W. Tan, T. Tu, T. R. Li, Y. C. Zhang, Z. Y. Zhang, L. M. Peng, P. Gao, B. H. Yan, and H. L. Peng, Nano Lett. 19, 197 (2019).

    Article  ADS  Google Scholar 

  28. H. X. Fu, J. X. Wu, H. L. Peng, and B. H. Yan, Phys. Rev. B 97, 241203(R) (2018), arXiv: 1804.03186.

    Article  ADS  Google Scholar 

  29. N. F. Mott, Metal-Insulator Transitions, 2nd ed. (Taylor & Francis, London, 1990).

    Google Scholar 

  30. A. R. Mackintosh, Sci. Am. 209, 110 (1963).

    Article  ADS  Google Scholar 

  31. A. Spinelli, M. A. Torija, C. Liu, C. Jan, and C. Leighton, Phys. Rev. B 81, 155110 (2010).

    Article  ADS  Google Scholar 

  32. L. van den Dries, C. van Haesendonck, Y. Bruynseraede, and G. Deutscher, Phys. Rev. Lett. 46, 565 (1981).

    Article  ADS  Google Scholar 

  33. H. Z. Lu, and S. Q. Shen, Chin. Phys. B 25, 117202 (2016).

    Article  ADS  Google Scholar 

  34. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  35. P. A. Lee, and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985).

    Article  ADS  Google Scholar 

  36. B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).

    Article  ADS  Google Scholar 

  37. H. L. Li, X. T. Xu, Y. Zhang, R. L. Gillen, L. P. Shi, and J. Robertson, Sci. Rep. 8, 10920 (2018), arXiv: 1712.00532.

    Article  ADS  Google Scholar 

  38. N. F. Mott, Can. J. Phys. 34, 1356 (1956).

    Article  ADS  Google Scholar 

  39. N. F. Mott, Philos. Mag. 6, 287 (1961).

    Article  ADS  Google Scholar 

  40. K. Behnia, J. Phys.-Condens. Matter 27, 375501 (2015), arXiv: 1507.06084.

    Article  Google Scholar 

  41. J. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1960).

    MATH  Google Scholar 

  42. N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College Publishing, New York, 1976).

    MATH  Google Scholar 

  43. N. W. Ashcroft, J. Non-Crystalline Solids 156–158, 621 (1993).

    Article  ADS  Google Scholar 

  44. P. P. Edwards, T. V. Ramakrishnan, and C. N. R. Rao, J. Phys. Chem. 99, 5228 (1995).

    Article  Google Scholar 

  45. J. Engelmayer, X. Lin, C. P. Grams, R. German, T. Fröhlich, J. Hemberger, K. Behnia, and T. Lorenz, Phys. Rev. Mater. 3, 051401(R) (2019), arXiv: 1902.05512.

    Article  ADS  Google Scholar 

  46. Q. L. Wei, R. P. Li, C. Q. Lin, A. Han, A. Nie, Y. R. Li, L. J. Li, Y. C. Cheng, and W. Huang, ACS Nano 13, 13439 (2019).

    Article  Google Scholar 

  47. T. Ghosh, M. Samanta, A. Vasdev, K. Dolui, J. Ghatak, T. Das, G. Sheet, and K. Biswas, Nano Lett. 19, 5703 (2019).

    Article  ADS  Google Scholar 

  48. K. A. Müller, and H. Burkard, Phys. Rev. B 19, 3593 (1979).

    Article  ADS  Google Scholar 

  49. X. Lin, Z. Zhu, B. Fauqué, and K. Behnia, Phys. Rev. X 3, 021002 (2013), arXiv: 1211.4761.

    Google Scholar 

  50. A. Bhattacharya, B. Skinner, G. Khalsa, and A. V. Suslov, Nat. Commun. 7, 12974 (2016), arXiv: 1607.06085.

    Article  ADS  Google Scholar 

  51. M. Shayegan, V. J. Goldman, and H. D. Drew, Phys. Rev. B 38, 5585 (1988).

    Article  ADS  Google Scholar 

  52. S. Noguchi, and H. Sakata, J. Phys. D-Appl. Phys. 13, 1129 (1980).

    Article  ADS  Google Scholar 

  53. T. Minami, H. Sato, K. Ohashi, T. Tomofuji, and S. Takata, J. Cryst. Growth 117, 370 (1992).

    Article  ADS  Google Scholar 

  54. J. L. Wang, L. W. Yang, C. W. Rischau, Z. K. Xu, Z. Ren, T. Lorenz, J. Hemberger, X. Lin, and K. Behniaa, npj Quantum Mater. 4, 61 (2019), arXiv: 1909.04278.

    Article  ADS  Google Scholar 

  55. C. Yamanouchi, K. Mizuguchi, and W. Sasaki, J. Phys. Soc. Jpn. 22, 859 (1967).

    Article  ADS  Google Scholar 

  56. M. J. Katz, S. H. Koenig, and A. A. Lopez, Phys. Rev. Lett. 15, 828 (1965).

    Article  ADS  Google Scholar 

  57. W. Sasaki, Prog. Theor. Phys. Suppl. 57, 225 (1975).

    Article  ADS  Google Scholar 

  58. M. Watanabe, Y. Ootuka, K. M. Itoh, and E. E. Haller, Phys. Rev. B 58, 9851 (1998), arXiv: cond-mat/9806267.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Lin.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 11904294), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LQ19A040005), and the foundation of Westlake Multidisciplinary Research Initiative Center (MRIC) (Grant No. MRIC20200402). We thank the support provided by Dr. Chao Zhang from Instrumentation and Service Center for Physical Sciences at Westlake University. We acknowledge Kamran Behnia and Wenbin Li for stimulating discussion.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Wang, J., Wang, T. et al. Huge permittivity and premature metallicity in Bi2O2Se single crystals. Sci. China Phys. Mech. Astron. 64, 267312 (2021). https://doi.org/10.1007/s11433-021-1683-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1683-5

Navigation