Skip to main content
Log in

An FPGA-Based Performance Evaluation of Artificial Neural Network Architecture Algorithm for IoT

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Nowadays, the high number of devices and applications connected to the Internet has generated a great amount of data being which makes privacy and protection a more challenging task. In addition, new technologies, such as the Internet of Things, incorporate many resource-constrained devices in the network. Reliable cryptography algorithms have to be employed to deal with this problem, which also needs to be efficiently implemented in small devices. There are several algorithms for this purpose, among them, neural cryptography. In this context, this work proposes the implementation of an artificial neural network architecture called tree parity machine (TPM) to perform the exchange of keys through the mutual learning of these networks. This method is not based on number theory, which makes it less computationally costly, and can be an alternative for embedded systems, which generally have several limitations in the processing capacity and resources used. In the area of embedded systems, FPGAs have gained more space, thanks to their reconfiguration capacity. Thus, different methods for implementing a TPM in FPGA were tested and analyzed, in order to optimize the following performance parameters, the response time, the maximum frequency of operation, and the consumed area of the FPGA considering logical elements, embedded multipliers, and registers. In addition, software implementation based on a multi-core CPU was used for comparison purposes. Experimental results demonstrated that the implementation of parallelism in FPGA for different blocks of the TPM weight matrix reached the best performance results. Thus, our proposal intends to develop an economic component in terms of resource consumption, however, maintaining the characteristic of high processing capacity. Therefore, the methodologies presented in this paper intends to be a useful reference to optimize future implementations in FPGA for cryptography applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Saadi, M., Noor, M. T., Imran, A., Toor, W. T., Mumtaz, S., & Wuttisittikulkij, L. (2020). IoT enabled quality of experience measurement for next generation networks in smart cities. Sustainable Cities and Society, 60, 102266.

    Article  Google Scholar 

  2. Saadi, M., Bajpai, A., Zhao, Y., Sangwongngam, P., & Wuttisittikulkij, L. (2014). Design and implementation of secure and reliable communication using optical wireless communication. Frequenz, 68(11–12), 501–509.

    Google Scholar 

  3. Gupta, M., Gupta, M., & Deshmukh, M. (2020). Single secret image sharing scheme using neural cryptography. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-019-08454-8.

    Article  Google Scholar 

  4. Mwakwata, C. B., Malik, H., Mahtab Alam, M., Le Moullec, Y., Parand, S., & Mumtaz, S. (2019). Narrowband internet of things (NB-IoT): From physical (PHY) and media access control (MAC) layers perspectives. Sensors, 19(11), 2613.

    Article  Google Scholar 

  5. Feng, C., Yu, K., Aloqaily, M., Alazab, M., Lv, Z., & Mumtaz, S. (2020). Attribute-based encryption with parallel outsourced decryption for edge intelligent IoV. IEEE Transactions on Vehicular Technology, 69(11), 13784–13795.

    Article  Google Scholar 

  6. Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE Transactions on Information Theory, 22(6), 644–654. https://doi.org/10.1109/tit.1976.1055638.

    Article  MathSciNet  MATH  Google Scholar 

  7. Ibrahem, M. K. (2012). Modification of diffie-hellman key exchange algorithm for zero knowledge proof, In 2012 international conference on future communication networks, (pp. 147–152). https://doi.org/10.1109/ICFCN.2012.6206859.

  8. Dorokhin, Édgar Salguero, Fuertes, W., & Lascano, E. (2019). On the development of an optimal structure of tree parity machine for the establishment of a cryptographic key. Security and Communication Networks. https://doi.org/10.1155/2019/8214681.

    Article  Google Scholar 

  9. Mumtaz, S., Bo, A., Al-Dulaimi, A., & Tsang, K.-F. (2018). Guest editorial 5G and beyond mobile technologies and applications for industrial IoT (IIoT). IEEE Transactions on Industrial Informatics, 14(6), 2588–2591.

    Article  Google Scholar 

  10. Alvi, M., Abualnaja, K. M., Toor, W. T., & Saadi, M. (2021). Performance analysis of access class barring for next generation IoT devices. Alexandria Engineering Journal, 60(1), 615–627.

    Article  Google Scholar 

  11. Terra Vieira, S., Lopes Rosa, R., Zegarra Rodríguez, D., Arjona Ramírez, M., Saadi, M., & Wuttisittikulkij, L. (2021). Q-meter: Quality monitoring system for telecommunication services based on sentiment analysis using deep learning. Sensors, 21(5), 1880.

    Article  Google Scholar 

  12. Elbirt, A., Yip, W., Chetwynd, B., & Paar, C. (2001). An FPGA-based performance evaluation of the AES block cipher candidate algorithm finalists. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 9(4), 545–557. https://doi.org/10.1109/92.931230.

    Article  Google Scholar 

  13. Kumar, P. K., & Baskaran, K. (2010). An ASIC implementation of low power and high throughput blowfish crypto algorithm. Microelectronics Journal, 41(6), 347–355. https://doi.org/10.1016/j.mejo.2010.04.004.

    Article  Google Scholar 

  14. Zodpe, H., & Sapkal, A. (2020). An efficient AES implementation using FPGA with enhanced security features. Journal of King Saud University - Engineering Sciences, 32(2), 115–122. https://doi.org/10.1016/j.jksues.2018.07.002.

    Article  Google Scholar 

  15. Phanomchoeng, G., Saadi, M., Sasithong, P., Tangmongkhonsuk, J., Wijayasekara, S. K., & Wuttisittikulkij, L. (2020). Hardware software co-design of a farming robot. Engineering Journal, 24(1), 199–208.

    Article  Google Scholar 

  16. Gomez, H., Reyes, Óscar., & Roa, E. (2017). A 65 nm CMOS key establishment core based on tree parity machines. Integration, 58, 430–437. https://doi.org/10.1016/j.vlsi.2017.01.010.

    Article  Google Scholar 

  17. Martínez Padilla, J., Meyer-Baese, U., & Foo, S. (2018). Security evaluation of tree parity re-keying machine implementations utilizing side-channel emissions. EURASIP Journal on Information Security, 2018(1), 3. https://doi.org/10.1186/s13635-018-0073-z.

    Article  Google Scholar 

  18. Kanter, I., Kinzel, W., & Kanter, E. (2002). Secure exchange of information by synchronization of neural networks. Europhysics Letters (EPL), 57(1), 141–147. https://doi.org/10.1209/epl/i2002-00552-9.

    Article  MATH  Google Scholar 

  19. Mariappan, E., Kaliappan, M., & Vimal, S. (2016). Energy efficient routing protocol using Grover’s searching algorithm for MANET.

  20. Vimal, S., Khari, M., Dey, N., Crespo, R. G., & Harold Robinson, Y. (2020). Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT. Computer Communications, 151, 355–364. https://doi.org/10.1016/j.comcom.2020.01.018.

    Article  Google Scholar 

  21. Vimal, S., Khari, M., Crespo, R. G., Kalaivani, L., Dey, N., & Kaliappan, M. (2020). Energy enhancement using Multiobjective Ant colony optimization with Double Q learning algorithm for IoT based cognitive radio networks. Computer Communications, 154, 481–490. https://doi.org/10.1016/j.comcom.2020.03.004.

    Article  Google Scholar 

  22. Pasupathi, S., Vimal, S., Harold-Robinson, Y., Khari, M., Verdú, E., & Crespo, R. G. (2020). Energy efficiency maximization algorithm for underwater Mobile sensor networks. Earth Science Informatics. https://doi.org/10.1007/s12145-020-00478-1.

    Article  Google Scholar 

  23. Rosa, R. L., Rodriguez, D. Z., & Bressan, G. (2013). Sentimeter-br: A social web analysis tool to discover consumers’ sentiment. In 2013 IEEE 14th international conference on mobile data management (Vol. 2, pp. 122–124). https://doi.org/10.1109/MDM.2013.80.

  24. Robinson, Y. H., Vimal, S., Julie, E. G., Khari, M., Expósito-Izquierdo, C., & Martínez, J. (2020). Hybrid optimization routing management for autonomous underwater vehicle in the internet of underwater things. Earth Science Informatics. https://doi.org/10.1007/s12145-020-00538-6.

    Article  Google Scholar 

  25. Annamalai, S., Udendhran, R., & Vimal, S. (2019). An intelligent grid network based on cloud computing infrastructures. In P. Raj & S. Koteeswaran (Eds.), Novel practices and trends in grid and cloud computing (pp. 59–73). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-5225-9023-1.ch005.

    Chapter  Google Scholar 

  26. Annamalai, S., Udendhran, R., & Vimal, S. (2019). Cloud-based predictive maintenance and machine monitoring for intelligent manufacturing for automobile industry. In P. Raj & S. Koteeswaran (Eds.), Novel practices and trends in grid and cloud computing (pp. 74–89). Hershey, PA, USA: IGI Global. https://doi.org/10.4018/978-1-5225-9023-1.ch006.

    Chapter  Google Scholar 

  27. Al-Khafaji, A. Q., Al-Gailani, M. F., & Abdullah, H. N. (2019). FPGA design and implementation of an AES algorithm based on iterative looping architecture. In 2019 IEEE 9th international conference on consumer electronics (ICCE-Berlin) (pp. 1–5). https://doi.org/10.1109/ICCE-Berlin47944.2019.8966137.

  28. Aghili, S. F., Mala, H., Kaliyar, P., & Conti, M. (2019). SecLAP: Secure and lightweight RFID authentication protocol for medical IoT. Future Generation Computer Systems, 101, 621–634. https://doi.org/10.1016/j.future.2019.07.004.

    Article  Google Scholar 

  29. Sureshkumar, V., Amin, R., Vijaykumar, V., & Sekar, S. R. (2019). Robust secure communication protocol for smart healthcare system with FPGA implementation. Future Generation Computer Systems, 100, 938–951. https://doi.org/10.1016/j.future.2019.05.058.

    Article  Google Scholar 

  30. Mishra, Z., & Acharya, B. (2020). High throughput and low area architectures of secure IoT algorithm for medical image encryption. Journal of Information Security and Applications, 53, 102533. https://doi.org/10.1016/j.jisa.2020.102533.

    Article  Google Scholar 

  31. Vimal, S., Kalaivani, L., Kaliappan, M., Suresh, A., Gao, X.-Z., & Varatharajan, R. (2018). Development of secured data transmission using machine learning-based discrete-time partially observed Markov model and energy optimization in cognitive radio networks. Neural Computing and Applications, 32(1), 151–161. https://doi.org/10.1007/s00521-018-3788-3.

    Article  Google Scholar 

  32. Vimal, S., Kalaivani, L., & Kaliappan, M. (2019). Collaborative approach on mitigating spectrum sensing data hijack attack and dynamic spectrum allocation based on CASG modeling in wireless cognitive radio networks. Cluster Computing, 22(5), 10491–10501. https://doi.org/10.1007/s10586-017-1092-0.

    Article  Google Scholar 

  33. Subbulakshmi, P., & Vimal, S. (2016). Secure data packet transmission in manet using enhanced identity based cryptography (EIBC). International Journal of New Technologies in Science and Engineering, 3(12), 35–42.

    Google Scholar 

  34. Koziel, B., Azarderakhsh, R., Mozaffari Kermani, M., & Jao, D. (2017). Post-quantum cryptography on FPGA based on isogenies on elliptic curves. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(1), 86–99. https://doi.org/10.1109/TCSI.2016.2611561.

    Article  MATH  Google Scholar 

  35. Aysu, A., Tobah, Y., Tiwari, M., Gerstlauer, A., & Orshansky, M. (2018). Horizontal side-channel vulnerabilities of post-quantum key exchange protocols. In 2018 IEEE international symposium on hardware oriented security and trust (HOST) (pp. 81–88). https://doi.org/10.1109/HST.2018.8383894.

  36. Xing, Y., & Li, S. (2020). An efficient implementation of the newhope key exchange on FPGAS. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(3), 866–878. https://doi.org/10.1109/TCSI.2019.2956651.

    Article  MathSciNet  MATH  Google Scholar 

  37. Koziel, B., Azarderakhsh, R., & Kermani, M. M. (2018). A high-performance and scalable hardware architecture for isogeny-based cryptography. IEEE Transactions on Computers, 67(11), 1594–1609. https://doi.org/10.1109/TC.2018.2815605.

    Article  MathSciNet  MATH  Google Scholar 

  38. Chatterjee, U., Govindan, V., Sadhukhan, R., Mukhopadhyay, D., Chakraborty, R. S., Mahata, D., & Prabhu, M. M. (2019). Building PUF based authentication and key exchange protocol for IoT without explicit CRPS in verifier database. IEEE Transactions on Dependable and Secure Computing, 16(3), 424–437. https://doi.org/10.1109/TDSC.2018.2832201.

    Article  Google Scholar 

  39. Sharma, P., & Sharma, R. K. (2016). Design and implementation of encryption algorithm for real time speech signals, In Conference on advances in signal processing (CASP), 2016 (pp. 237–241). https://doi.org/10.1109/CASP.2016.7746172.

  40. Ruttor, A., Kinzel, W., & Kanter, I. (2005). Neural cryptography with queries. Journal of Statistical Mechanics: Theory and Experiment, 2005(01), P01009. https://doi.org/10.1088/1742-5468/2005/01/p01009.

    Article  MATH  Google Scholar 

  41. Allam, A. M., & Abbas, H. M. (2010). On the improvement of neural cryptography using erroneous transmitted information with error prediction. IEEE Transactions on Neural Networks, 21(12), 1915–1924. https://doi.org/10.1109/TNN.2010.2079948.

    Article  Google Scholar 

  42. Javurek, M., & Turčaník, M. (2016). Synchronization of two tree parity machines. In New trends in signal processing (NTSP), 2016 (pp. 1–4). https://doi.org/10.1109/NTSP.2016.7747782.

  43. Santhanalakshmi, S., S. K., & Patra, G. K. (2015). Analysis of neural synchronization using genetic approach for secure key generation. In Communications in computer and information science (pp. 207–216). Springer. https://doi.org/10.1007/978-3-319-22915-7_20.

  44. Sarkar, A., Dey, J., Chatterjee, M., Bhowmik, A., & Karforma, S. (2019). Neural soft computing based secured transmission of intraoral gingivitis image in e-health care. Indonesian Journal of Electrical Engineering and Computer Science, 14(1), 186–192. https://doi.org/10.11591/ijeecs.v14.i1.pp186-192 (cited By 1).

    Article  Google Scholar 

  45. Chen, T., Yan, D., & Bai, S. (2009). Tinytpm: A novel lightweight key agreement scheme for sensor networks. In 2009 WRI international conference on communications and mobile computing (Vol. 3, pp. 518–522). https://doi.org/10.1109/CMC.2009.104.

  46. Anikin, I. V., Makhmutova, A. Z., & Gadelshin, O. E. (2016). Symmetric encryption with key distribution based on neural networks, In 2016 2nd international conference on industrial engineering, applications and manufacturing (ICIEAM) (pp. 1–4). https://doi.org/10.1109/ICIEAM.2016.7911640.

  47. Pu, X., jian Tian, X., Zhang, J., yan Liu, C., & Yin, J. (2016). Chaotic multimedia stream cipher scheme based on true random sequence combined with tree parity machine. Multimedia Tools and Applications, 76(19), 19881–19895. https://doi.org/10.1007/s11042-016-3728-0.

    Article  Google Scholar 

  48. Dolecki, M., & Kozera, R. (2015). The impact of the TPM weights distribution on network synchronization time. In Computer information systems and industrial management (pp. 451–460). Springer. https://doi.org/10.1007/978-3-319-24369-6_37.

  49. Sarkar, A., & Mandal, J. K. (2015). Comparative analysis of tree parity machine and double hidden layer perceptron based session key exchange in wireless communication. In Advances in intelligent systems and computing (pp. 53–61). Springer. https://doi.org/10.1007/978-3-319-13728-5_6.

  50. Volkmer, M., & Wallner, S. (2005). Tree parity machine rekeying architectures. IEEE Transactions on Computers, 54(4), 421–427. https://doi.org/10.1109/TC.2005.70.

    Article  Google Scholar 

  51. Muhlbach, S., & Wallner, S. (2007). Secure and authenticated communication in chip-level microcomputer bus systems with tree parity machines. In 2007 international conference on embedded computer systems: Architectures, modeling and simulation (pp. 201–208). https://doi.org/10.1109/ICSAMOS.2007.4285752.

  52. Ruttor, A. (2007). Neural synchronization and cryptography. arXiv:0711.2411.

  53. Kinzel, W., & Kanter, I. (2002). Neural cryptography. In Proceedings of the 9th international conference on neural information processing, 2002. ICONIP ’02. (Vol. 3, pp. 1351–1354). https://doi.org/10.1109/ICONIP.2002.1202841.

  54. Beazley, D. M. (1996). Swig: An easy to use tool for integrating scripting languages with c and c++. In Proceedings of the 4th conference on USENIX Tcl/Tk workshop, 1996 - Volume 4, TCLTK’96 (p. 15). USENIX Association, USA.

  55. McKinney, W., et al. (2010). Data structures for statistical computing in python. In Proceedings of the 9th python in science conference (Vol. 445, pp. 51–56). Austin, TX. https://doi.org/10.25080/Majora-92bf1922-00a.

  56. Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Minas Gerais State Research Support Foundation (FAPEMIG) under Grant 11230 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Saadi or Demóstenes Z. Rodríguez.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teodoro, A.A.M., Gomes, O.S.M., Saadi, M. et al. An FPGA-Based Performance Evaluation of Artificial Neural Network Architecture Algorithm for IoT. Wireless Pers Commun 127, 1085–1116 (2022). https://doi.org/10.1007/s11277-021-08566-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08566-1

Keywords

Navigation