Skip to main content
Log in

Bis(diphenylphosphino)ethane nickel polychloridophenylthiolate complexes: synthesis and characterization

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Reactions of (dppe)NiCl2 (dppe = 1,2-bis(diphenylphosphino)ethane) with chlorido-substituted phenyl thiolates (RClS) produced the corresponding nickel thiolate complexes (dppe)Ni(SRCl)2 (RCl = 3,5-C6H3Cl2 (1), C6Cl5 (2)) in high isolated yields. Complexes 1 and 2 were characterized by spectroscopic techniques such as (UV–Vis, IR, 1H-, 31P{1H}-, 13C{1H}-NMR) as well as elemental analysis. The molecular structures of complexes 1 and 2, determined by X-ray diffraction measurements, have a cis square planar geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Fontecilla-Camps JC, Amara P, Cavazza C, Nicolet Y, Volbeda Y (2009) Structure–function relationships of anaerobic gas-processing metalloenzymes. Nature 460:814–822

    Article  CAS  PubMed  Google Scholar 

  2. Tard C, Pickett CJ (2009) Structural and functional analogues of the active sites of the [Fe]-, [NiFe]-, and [FeFe]-hydrogenases. Chem Rev 109:2245–2274

    Article  CAS  PubMed  Google Scholar 

  3. Volbeda A, Garcin E, Piras C, de Lacey AL, Fernandez VM, Hatchikian EC, Frey M, Fontecilla-Camps JC (1996) Structure of the [NiFe] hydrogenase active site: evidence for biologically uncommon Fe ligands. J Am Chem Soc 118:12989–23996

    Article  CAS  Google Scholar 

  4. Doukov TL, Iverson TM, Sevaralli J, Ragsdale SW, Drennan CL (2002) A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/Acetyl-CoA synthase. Science 298:567–574

    Article  CAS  PubMed  Google Scholar 

  5. Svetlitchnyi V, Dobbek H, Meyer-Klaucke W, Meins T, Thiele B, Römer P, Huber R, Meyer O (2004) A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc Natl Acad Sci USA 101:446–457

    Article  CAS  PubMed  Google Scholar 

  6. Brooker S (2001) Complexes of thiophenolate-containing Schiff-base macrocycles and their amine analogues. Coord Chem Rev 222:33–36

    Article  CAS  Google Scholar 

  7. Can M, Armstrong FM, Ragsdale SW (2014) Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev 114:4149–4174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Breglia R, Arrigoni F, Sensi M, Greco C, Fantucci P, De Gioia L, Bruschi M (2021) First-principles calculations on Ni, Fe-containing carbon monoxide dehydrogenases reveal key stereoelectronic features for binding and release of CO2 to/from the C-cluster. Inorg Chem 60:387–402

    Article  CAS  PubMed  Google Scholar 

  9. Merrouch M, Benvenuti M, Lorenzi M, Léger C, Fourmond V, Dementin S (2018) Maturation of the [Ni-4Fe-4S] active site of carbon monoxide dehydrogenases. J Bio Inorg Chem 23:613–620

    Article  CAS  Google Scholar 

  10. Groysman S, Holm RH (2009) Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites. Biochem 48:2310–2320

    Article  CAS  Google Scholar 

  11. Tai H, Hirota S (2020) Mechanism and application of the catalytic reaction of [NiFe] hydrogenase: recent developments. ChemBioChem 21:1573–1581

    Article  CAS  PubMed  Google Scholar 

  12. Caserta G, Lorent C, Ciaccafava A, Keck M, Breglia R, Greco C, Limberg C, Hildebrandt S, Cramer SP, Zebger I, Lenz O (2020) The large subunit of the regulatory [NiFe]-hydrogenase from Ralstonia eutropha—a minimal hydrogenase. Chem Sci 11:5453–5465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Calderón MF, Zelaya E, Benitez GA, Schilardi PL, Creus AH, Orive AG, Salvarezza RC, Ibañez FG (2013) New findings for the composition and structure of Ni nanoparticles protected with organomercaptan molecules. Langmuir 29:4670–4678

    Article  PubMed  Google Scholar 

  14. Ji J, Wang G, Wang T, You X, Xu X (2014) Thiolate-protected Ni39 and Ni41 nanoclusters: synthesis, self-assembly and magnetic properties. Nanoscale 6:9185–9191

    Article  CAS  PubMed  Google Scholar 

  15. Ahmadi M, Correia J, Chrysochos N, Schulzke C (2020) A mixed-valence tetra-nuclear nickel dithiolene complex: synthesis, crystal structure, and the lability of its nickel sulfur bonds. Inorganics 8:27

    Article  CAS  Google Scholar 

  16. Horn B, Limberg C, Herwig C, Braun B (2014) Three-coordinate nickel(II) and nickel(I) thiolate complexes based on the β-diketiminate ligand system. Inorg Chem 53:6867–6874

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen DH, Hsu HF, Millar M, Koch SA, Achim C, Bominaar EL, Muenck E (1996) Nickel (II) thiolate complex with carbon monoxide and its Fe (II) analog: synthetic models for CO adducts of nickel−iron-containing enzymes. J Am Chem Soc 118:8963–8964

    Article  CAS  Google Scholar 

  18. Decker C, Henderson W, Nickolson BK (2010) Platinum(II), palladium(II), nickel(II) and gold(I) complexes of the ‘electrospray-friendly’ thiolate ligands 4-SC5H4N and 4-SC6H4OMe. J Coord Chem 63:2965–2975

    Article  CAS  Google Scholar 

  19. Aufissier V, Clegg W, Harington RW, Henderson RA (2004) Proton transfer to nickel−thiolate complexes. Protonation of [Ni(SC6H4R-4)2(Ph2PCH2CH2PPh2)] (R= Me, MeO, H, Cl, or NO2). Inorg Chem 43:3098–3105

    Article  Google Scholar 

  20. Herich P, Kamenicek J, Kuca K, Pohanka M, Olsovsky H (2009) Planar Ni(II) 1,2-dithiolenes involving bidentate P-donor ligands. Polyhedron 28:3565–3569

    Article  CAS  Google Scholar 

  21. Darkwa J (1997) Reversible absorption of sulfur dioxide by bis(diphenylphosphino)ethanenickel(II) aryldithiolates. Inorg Chim Acta 257:137–141

    Article  CAS  Google Scholar 

  22. Landis KG, Hunter AD, Wagner TR, Curtin LS, Filler FL, Jamsen-Varnum SA (1998) The synthesis and characterization of Ni, Pd and Pt maleonitriledithiolate complexes: X-ray crystal structures of the isomorphous Ni, Pd and Pt (Ph2PCH2CH2PPh2)M(maleonitriledithiolate) congeners. Inorg Chim Acta 282:155–162

    Article  CAS  Google Scholar 

  23. Dixon KR, Moss KC, Smith MAR (1973) Synthesis and fluorine-19 nuclear magnetic resonance spectra of trifluoromethylthio-complexes of platinum, palladium, nickel, and iridium. J Chem Soc Dalton Trans. https://doi.org/10.1039/dt9730001528

    Article  Google Scholar 

  24. Hayter RG, Humiec FS (1964) Some mercaptides and mercaptide complexes of nickel and palladium. J Inorg Nucl Chem 26:807–830

    Article  CAS  Google Scholar 

  25. Lucas CR, Peach ME, Ramaswamy KK (1972) Some reactions of M(SC6Cl5)2, M = Ni, Pd, Pt. J Inorg Nucl Chem 34:3267–3268

    Article  CAS  Google Scholar 

  26. Anamika DK, Yadav KK, Manar CL, Kumar YK, Ganesan V, Drew MGB, Singh N (2020) New heteroleptic [Ni(II) 1,1-dithiolate-phosphine] complexes: synthesis, characterization and electrocatalytic oxygen evolution studies. Dalton Trans 49:3592–3605

    Article  CAS  PubMed  Google Scholar 

  27. Sheldrick GM (2014) SHELXS-2014, Program for structure solution, University of Göttingen, Germany

  28. Sheldrick GM (2014) SHELXL-2014, Program for structure solution, University of Göttingen, Germany

  29. Hadjikostas CC, Alkam HH, Bolos CA, Christidis PC (2001) Synthesis and spectroscopic investigation of some mixed-ligand nickel(II) chelates containing phosphines and 1,1-dithiolate ligands. Crystal structure of [(1,2-bis(diphenylphosphino)ethane)-1,1-dicyano-2,2-ethylenedithiolato]nickel(II). Polyhedron 20:395–401

    Article  CAS  Google Scholar 

  30. Colthup NB, Daly LH, Wiberley SE (1964) Introduction to Infrared and Raman Spectroscopy. Academic Press, New York and London

    Google Scholar 

  31. Blacke AJ, McQuillan GP (1984) Structures, vibrational spectra, and ligand behaviour of tris(2-cyanoethyl)phosphine and its oxide, sulphide, and selenide. J Chem Soc Dalton Trans. https://doi.org/10.1039/dt9840001849

    Article  Google Scholar 

  32. de Castro VD, de Lima GM, Porto AO, Siebald HGL, de Souza Filho JD, Ardisson JD, Ayala JD, Bombieri G (2004) Synthesis, structural characterisation and thermal decomposition of [{Pt(dppf)(2-SPy){BF4}] (dppf=1,1′-bisdiphenylphosfinoferrocene and 2-SPy= 2-mercaptopyridine)—a source for a Fe–Pt containing alloy. Polyhedron 23:63–69

    Article  Google Scholar 

  33. Bartlett MA, Sundermeyer J (2018) Group 10 metal–thiocatecholate capped magnesium phthalocyanines—coupling chromophore and electron donor/acceptor entities and its impact on sulfur induced red-shifts. Dalton Trans 47:16255–16263

    Article  CAS  PubMed  Google Scholar 

  34. Yang L, Powell DR, Houser RP (2007) Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. https://doi.org/10.1039/B617136B

    Article  PubMed  Google Scholar 

  35. Bondi A (1964) van der waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  36. Prasanna MD, Guru Row TN (2000) C–halogen···π interactions and their influence on molecular conformation and crystal packing: a database study. Cryst Eng 3:135–154

    Article  CAS  Google Scholar 

  37. Vener MV, Shishkina AV, Rykounov AA, Tsirelson VG (2013) Cl···Cl interactions in molecular crystals: insights from the theoretical charge density analysis. J Phys Chem A 117:8459–8467

    Article  CAS  PubMed  Google Scholar 

  38. Mukherjee A, Tothadi S, Desiraju GR (2014) Halogen bonds in crystal engineering: like hydrogen bonds yet different. Acc Chem Res 47:2514–2524

    Article  CAS  PubMed  Google Scholar 

  39. Reddy CM, Kirchner MT, Gundakaram RC, Padmanabhan KA, Desiraju GR (2006) Isostructurality, polymorphism and mechanical properties of some hexahalogenated benzenes: the nature of halogen···halogen interactions. Chem Eur J 12:2222–2234

    Article  CAS  PubMed  Google Scholar 

  40. Lever APB (1984) Inorganic electronic spectroscopy. Elsevier, Amsterdam

    Google Scholar 

Download references

Funding

M. El-khateeb thanks Jordan University of Science and Technology for sabbatical leave (Grant No. 240/2019) and the Arab Fund for Economic and Social Development, Kuwait for scholarship.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contribution of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Mohammad El-khateeb.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 832 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Smadi, M., El-khateeb, M., Moriyama, H. et al. Bis(diphenylphosphino)ethane nickel polychloridophenylthiolate complexes: synthesis and characterization. Transit Met Chem 46, 465–470 (2021). https://doi.org/10.1007/s11243-021-00463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-021-00463-7

Navigation