Skip to main content
Log in

Effects of water currents on fish migration through a Feynman-type path integral approach under \(\sqrt{8/3}\) Liouville-like quantum gravity surfaces

  • Original Article
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

A stochastic differential game theoretic model has been proposed to determine optimal behavior of a fish while migrating against water currents both in rivers and oceans. Then, a dynamic objective function is maximized subject to two stochastic dynamics, one represents its location and another its relative velocity against water currents. In relative velocity stochastic dynamics, a Cucker–Smale type stochastic differential equation is introduced under white noise. As the information regarding hydrodynamic environment is incomplete and imperfect, a Feynman type path integral under \(\sqrt{8/3}\) Liouville-like quantum gravity surface has been introduced to obtain a Wick-rotated Schrödinger type equation to determine an optimal strategy of a fish during its migration. The advantage of having Feynman type path integral is that, it can be used in more generalized nonlinear stochastic differential equations where constructing a Hamiltonian–Jacobi–Bellman (HJB) equation is impossible. The mathematical analytic results show exact expression of an optimal strategy of a fish under imperfect information and uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahn SM, Ha SY (2010) Stochastic flocking dynamics of the cucker-smale model with multiplicative white noises. J Math Phys 51(10):103301

    Article  Google Scholar 

  • Arai T, Hayano H, Asami H, Miyazaki N (2003) Coexistence of anadromous and lacustrine life histories of the shirauo, salangichthys microdon. Fish Oceanogr 12(2):134–139

    Article  Google Scholar 

  • Arai T, Yang J, Miyazaki N (2006) Migration flexibility between freshwater and marine habitats of the pond smelt hypomesus nipponensis. J Fish Biol 68(5):1388–1398

    Article  Google Scholar 

  • Baaquie BE (1997) A path integral approach to option pricing with stochastic volatility: some exact results. J de Phys I 7(12):1733–1753

    Google Scholar 

  • Baaquie BE (2007) Quantum finance: path integrals and Hamiltonians for options and interest rates. Cambridge University Press, Cambridge

    Google Scholar 

  • Bauer S, Klaassen M (2013) Mechanistic models of animal migration behaviour-their diversity, structure and use. J Anim Ecol 82(3):498–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Bochner S, Chandrasekharan K et al (1949) Fourier transforms. Princeton University Press, Princeton

    Google Scholar 

  • Carrillo JA, Fornasier M, Rosado J, Toscani G (2010) Asymptotic flocking dynamics for the kinetic cucker-smale model. SIAM J Math Anal 42(1):218–236

    Article  Google Scholar 

  • Dorst JP (2019) Migration. https://www.britannica.com/science/migration-animal, [Online; posted 06-August-2019]

  • Duplantier B, Sheffield S (2011) Liouville quantum gravity and kpz. Inventiones mathematicae 185(2):333–393

    Article  Google Scholar 

  • Feynman RP (1948) Space-time approach to non-relativistic quantum mechanics. Rev Mod Phys 20(2):367

    Article  Google Scholar 

  • Fujiwara D (2017) Feynman’s idea. In rigorous time slicing approach to feynman path integrals. Springer, Berlin

    Book  Google Scholar 

  • Guse B, Kail J, Radinger J, Schröder M, Kiesel J, Hering D, Wolter C, Fohrer N (2015) Eco-hydrologic model cascades: simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. Sci Total Environ 533:542–556

    Article  CAS  PubMed  Google Scholar 

  • Gwynne E, Miller J (2016) Metric gluing of brownian and \(\sqrt{8/3}\)-liouville quantum gravity surfaces. arXiv preprint arXiv:160800955

  • Ha SY, Lee K, Levy D et al (2009) Emergence of time-asymptotic flocking in a stochastic cucker-smale system. Commun Math Sci 7(2):453–469

    Article  Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, Chapman & Hall

    Google Scholar 

  • Hellman Z, Levy YJ (2019) Measurable selection for purely atomic games. Econometrica 87(2):593–629

    Article  Google Scholar 

  • Jonsson N, Jonsson B (2002) Migration of anadromous brown trout salmo trutta in a Norwegian river. Freshw Biol 47(8):1391–1401

    Article  Google Scholar 

  • Kappen HJ (2005a) Linear theory for control of nonlinear stochastic systems. Phys Rev Lett 95(20):200201

    Article  PubMed  Google Scholar 

  • Kappen HJ (2005b) Path integrals and symmetry breaking for optimal control theory. J Stat Mech Theor Exp 2005(11):P11011

    Article  Google Scholar 

  • Kappen HJ (2007) An introduction to stochastic control theory, path integrals and reinforcement learning. AIP conference proceedings, American Institute of Physics 887:149–181

  • Knizhnik VG, Polyakov AM, Zamolodchikov AB (1988) Fractal structure of 2d-quantum gravity. Modern Phys Lett A 3(08):819–826

    Article  CAS  Google Scholar 

  • Lande R, Engen S, Saether BE et al (2003) Stochastic population dynamics in ecology and conservation. Oxford University Press, Oxford

    Book  Google Scholar 

  • Larsson M (2012) Incidental sounds of locomotion in animal cognition. Anim Cognit 15(1):1–13

    Article  Google Scholar 

  • Lemasson BH, Haefner JW, Bowen MD (2014) Schooling increases risk exposure for fish navigating past artificial barriers. PloS One 9(9):108220

    Article  Google Scholar 

  • Marcet A, Marimon R (2019) Recursive contracts. Econometrica 87(5):1589–1631

    Article  Google Scholar 

  • Mas-Colell A, Whinston MD, Green JR et al (1995) Microeconomic theory, vol 1. Oxford University Press, New York

    Google Scholar 

  • Miller J (2018) Liouville quantum gravity as a metric space and a scaling limit. In: proceedings of the international congress of mathematicians: Rio de Janeiro 2018, World Scientific, pp 2945–2971

  • Miller J, Sheffield S (2016a) Imaginary geometry i: interacting sles. Prob Theory Relat Fields 164(3–4):553–705

    Article  Google Scholar 

  • Miller J, Sheffield S (2016b) Liouville quantum gravity and the brownian map iii: the conformal structure is determined. arXiv preprint arXiv:160805391

  • Nguyen LTH, Ta VT, Yagi A (2016) Obstacle avoiding patterns and cohesiveness of fish school. J Theor Biol 406:116–123

    Article  PubMed  Google Scholar 

  • Øksendal B (2003) Stochastic differential equations. In: stochastic differential equations. Springer, Berlin

    Book  Google Scholar 

  • Øksendal B, Sulem A (2019) Applied Stochastic Control of Jump Diffusions. Springer. This a later edition of the original book published in 2007. Øksendal, B, & Sulem A. (2007). Applied Stochastic Control of Jump Diffusions (Vol. 498). Berlin: Springer. https://link.springer.com/content/pdf/10.1007/978-3-030-02781-0.pdf

  • Pinti J, Celani A, Thygesen UH, Mariani P (2020) Optimal navigation and behavioural traits in oceanic migrations. Theor Ecol 13(4):583–593

    Article  Google Scholar 

  • Pitici M (2018) The best writing on mathematics 2017. Princeton University Press, Princeton

    Book  Google Scholar 

  • Polyakov AM (1981) Quantum geometry of bosonic strings. Phys Lett B 103(3):207–210

    Article  Google Scholar 

  • Polyakov AM (1987) Quantum gravity in two dimensions. Modern Phys Lett A 2(11):893–898

    Article  CAS  Google Scholar 

  • Polyakov AM (1996) Quantum geometry of fermionic strings. In: 30 Years Of The Landau Institute–Selected Papers, World Scientific, pp 602–604

  • Pramanik P (2020) Optimization of market stochastic dynamics. SN Op Res Forum, Springer 1:1–17

    Google Scholar 

  • Pramanik P, Polansky AM (2019) Semicooperation under curved strategy spacetime. arXiv preprint arXiv:191212146

  • Pramanik P, Polansky AM (2020a) Motivation to run in one-day cricket. arXiv preprint arXiv:200111099

  • Pramanik P, Polansky AM (2020b) Optimization of a dynamic profit function using euclidean path integral. arXiv preprint arXiv:200209394

  • Radinger J, Wolter C (2015) Disentangling the effects of habitat suitability, dispersal, and fragmentation on the distribution of river fishes. Ecol Appl 25(4):914–927

    Article  PubMed  Google Scholar 

  • Ross K (2008) Stochastic control in continuous time. Lecture Notes on Continuous Time Stochastic Control, Spring

  • Schramm O (2000) Scaling limits of loop-erased random walks and uniform spanning trees. Israel J Math 118(1):221–288

    Article  Google Scholar 

  • Shang Y, Bouffanais R (2014) Influence of the number of topologically interacting neighbors on swarm dynamics. Sci Rep 4:4184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheffield S (2007) Gaussian free fields for mathematicians. Prob Theory Relat Fields 139(3–4):521–541

    Article  Google Scholar 

  • Sheffield S et al (2016) Conformal weldings of random surfaces: Sle and the quantum gravity zipper. Ann Prob 44(5):3474–3545

    Article  Google Scholar 

  • Simon B (1979) Functional integration and quantum physics. Academic press, Cambridge

    Google Scholar 

  • Theodorou E, Buchli J, Schaal S (2010) Reinforcement learning of motor skills in high dimensions: a path integral approach. In: Robotics and Automation (ICRA), 2010 IEEE International Conference on, IEEE, pp 2397–2403

  • Theodorou EA (2011) Iterative path integral stochastic optimal control: theory and applications to motor control. University of Southern California. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.8228&rep=rep1&type=pdf

  • Ton TV, Linh NTH, Yagi A (2014) Flocking and non-flocking behavior in a stochastic cucker-smale system. Anal Appl 12(01):63–73

    Article  Google Scholar 

  • Torney CJ, Lorenzi T, Couzin ID, Levin SA (2015) Social information use and the evolution of unresponsiveness in collective systems. J Royal Soc Interf 12(103):20140893

    Article  Google Scholar 

  • Uchitane T, Ton TV, Yagi A (2012) An ordinary differential equation model for fish schooling. Sci Math Jpn 75(3):339–350

    Google Scholar 

  • Van Den Broek B, Wiegerinck W, Kappen B (2008) Graphical model inference in optimal control of stochastic multi-agent systems. J Art Intell Res 32:95–122

    Google Scholar 

  • Wang X, Pan Q, Kang Y, He M (2016) Predator group size distributions in predator-prey systems. Ecol complex 26:117–127

    Article  Google Scholar 

  • Yang I, Morzfeld M, Tomlin CJ, Chorin AJ (2014) Path integral formulation of stochastic optimal control with generalized costs. IFAC proceedings volumes 47(3):6994–7000

  • Yoshioka H (2017) A simple game-theoretic model for upstream fish migration. Theory Biosci 136(3–4):99–111

    Article  PubMed  Google Scholar 

  • Yoshioka H (2019) A stochastic differential game approach toward animal migration. Theory Biosci 138(2):277–303

    Article  PubMed  Google Scholar 

  • Yoshioka H, Yaegashi Y (2018) An optimal stopping approach for onset of fish migration. Theory Biosci 137(2):99–116

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka H, Shirai T, Tagami D (2019) A mixed optimal control approach for upstream fish migration. J Sustain Develop Energy W Environ Syst 7(1):101–121

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramahansa Pramanik.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, P. Effects of water currents on fish migration through a Feynman-type path integral approach under \(\sqrt{8/3}\) Liouville-like quantum gravity surfaces. Theory Biosci. 140, 205–223 (2021). https://doi.org/10.1007/s12064-021-00345-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-021-00345-7

Keywords

JEL classification

Navigation