Skip to main content
Log in

Prenylflavonoids from fruit of Macaranga tanarius promote glucose uptake via AMPK activation in L6 myotubes

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Skeletal muscle is a major tissue of glucose consumption and plays an important role in glucose homeostasis. Prenylflavonoids, a component of Macaranga tanarius fruits, have been reported to have antioxidant, antibacterial, and anticancer effects. However, the effects of these compounds on skeletal muscle glucose metabolism are unclear. Here, we isolated five prenylflavonoids from M. tanarius fruits, and investigated the mechanism of action of these compounds on skeletal muscle cells using L6 myotubes. We found that isonymphaeol B and 3′-geranyl naringenin increased glucose uptake in a dose-dependent manner. Furthermore, both isonymphaeol B and 3′-geranyl naringenin increased AMPK phosphorylation but did not affect PI3K-Akt phosphorylation. Isonymphaeol B and 3′-geranyl naringenin also increased Glut1 mRNA expression and plasma membrane GLUT1 protein levels. These results suggest that isonymphaeol B and 3′-geranyl naringenin have beneficial effects on glucose metabolism through AMPK and GLUT1 pathway. Isonymphaeol B and 3′-geranyl naringenin may be potential lead candidates for antidiabetic drug development.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. International Diabetes Federation (2019) IDF Diabetes Atlas, 9th edn. International Diabetes Federation, Brussels, Belgium

    Google Scholar 

  2. Kahn CR (1994) Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43:1066–1084

    Article  CAS  PubMed  Google Scholar 

  3. UK Prospective Diabetes Study Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Article  Google Scholar 

  4. Smith AG, Muscat GE (2005) Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease. Int J Biochem Cell Biol 37:2047–2063

    Article  CAS  PubMed  Google Scholar 

  5. DeFronzo RA, Gunnarsson R, Björkman O, Olsson M, Wahren J (1985) Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest 76:149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Joost HG, Thorens B (2001) The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members. Mol Membr Biol 18:247–256

    Article  CAS  PubMed  Google Scholar 

  7. Zaid H, Antonescu CN, Randhawa VK, Klip A (2008) Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J 413:201–215

    Article  CAS  PubMed  Google Scholar 

  8. Minokoshi Y, Kahn CR, Kahn BB (2003) Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem 278:33609–33612

    Article  CAS  PubMed  Google Scholar 

  9. Olson AL, Pessin JE (1996) Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 16:235–256

    Article  CAS  PubMed  Google Scholar 

  10. Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes 32:S7–S12

    Article  CAS  Google Scholar 

  11. Hwang JT, Kwon DY, Yoon SH (2009) AMP-activated protein kinase: a potential target for the diseases prevention by natural occurring polyphenols. N Biotechnol 26:17–22

    Article  CAS  PubMed  Google Scholar 

  12. Fogarty S, Hardie DG (2010) Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer. Biochim Biophys Acta 1804:581–591

    Article  CAS  PubMed  Google Scholar 

  13. Song Y, Shi J, Wu Y, Han C, Zou J, Shi Y, Liu Z (2014) Metformin ameliorates insulin resistance in L6 rat skeletal muscle cells through upregulation of SIRT3. Chin Med J 127:1523–1529

    CAS  PubMed  Google Scholar 

  14. Breen DM, Sanli T, Giacca A, Tsiani E (2008) Stimulation of muscle cell glucose uptake by resveratrol through sirtuins and AMPK. Biochem Biophys Res Commun 374:117–122

    Article  CAS  PubMed  Google Scholar 

  15. Na LX, Zhang YL, Li Y, Liu LY, Li R, Kong T, Sun CH (2011) Curcumin improves insulin resistance in skeletal muscle of rats. Nutr Metab Cardiovasc Dis 21:526–533

    Article  CAS  PubMed  Google Scholar 

  16. Kumazawa S, Nakamura J, Murase M, Miyagawa M, Ahn MR, Fukumoto S (2008) Plant origin of Okinawan propolis: honeybee behavior observation and phytochemical analysis. Naturwissenschaften 95:781–786

    Article  CAS  PubMed  Google Scholar 

  17. Kumazawa S, Murase M, Momose N, Fukumoto S (2014) Analysis of antioxidant prenylflavonoids in different parts of Macaranga tanarius, the plant origin of Okinawan propolis. Asian Pac J Trop Med 7:16–20

    Article  CAS  PubMed  Google Scholar 

  18. Kumazawa S, Ueda R, Hamasaka T, Fukumoto S, Fujimoto T, Nakayama T (2007) Antioxidant prenylated flavonoids from propolis collected in Okinawa, Japan. J Agric Food Chem 55:7722–7725

    Article  CAS  PubMed  Google Scholar 

  19. Lee JH, Kim YG, Khadke SK, Yamano A, Woo JT, Lee J (2019) Antimicrobial and antibiofilm activities of prenylated flavanones from Macaranga tanarius. Phytomedicine 63:153033

    Article  CAS  PubMed  Google Scholar 

  20. Shahinozzaman M, Taira N, Ishii T, Halim MA, Hossain MA, Tawata S (2018) Anti-inflammatory, anti-diabetic, and anti-alzheimer’s effects of prenylated flavonoids from okinawa propolis: an investigation by experimental and computational studies. Molecules 23:2479

    Article  PubMed Central  CAS  Google Scholar 

  21. Chen CN, Wu CL, Lin JK (2004) Propolin C from propolis induces apoptosis through activating caspases, Bid and cytochrome c release in human melanoma cells. Biochem Pharmacol 67:53–66

    Article  CAS  PubMed  Google Scholar 

  22. Chen CN, Weng MS, Wu CL, Lin JK (2004) Comparison of radical scavenging activity, cytotoxic effects and apoptosis induction in human melanoma cells by taiwanese propolis from different sources. Evid Based Complement Alternat Med 1:175–185

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yakushijin K, Shibayama K, Murata H, Furukawa H (1980) New prenylflavanones from Hernandia nymphaefolia (Presl) Kubitzki. Heterocycles 14:397–402

    Article  CAS  Google Scholar 

  24. Jayasinghe L, Rupasinghe GK, Hara N, Fujimoto Y (2006) Geranylated phenolic constituents from the fruits of Artocarpus nobilis. Phytochemistry 67:1353–1358

    Article  CAS  PubMed  Google Scholar 

  25. Nishiumi S, Ashida H (2007) Rapid preparation of a plasma membrane fraction from adipocytes and muscle cells: application to detection of translocated glucose transporter 4 on the plasma membrane. Biosci Biotechnol Biochem 71:2343–2346

    Article  CAS  PubMed  Google Scholar 

  26. Al-Ishaq RK, Abotaleb M, Kubatka P, Kajo K, Büsselberg D (2019) Flavonoids and their anti-diabetic effects: cellular mechanisms and effects to improve blood sugar levels. Biomolecules 9:E430

    Article  PubMed  CAS  Google Scholar 

  27. Hendrich AB, Malon R, Pola A, Shirataki Y, Motohashi N, Michalak K (2002) Differential interaction of Sophora isoflavonoids with lipid bilayers. Eur J Pharm Sci 16:201–208

    Article  CAS  PubMed  Google Scholar 

  28. Tammela P, Laitinen L, Galkin A, Wennberg T, Heczko R, Vuorela H, Slotte JP, Vuorela P (2004) Permeability characteristics and membrane affinity of flavonoids and alkyl gallates in Caco-2 cells and in phospholipid vesicles. Arch Biochem Biophys 425:193–199

    Article  CAS  PubMed  Google Scholar 

  29. Mukai R, Fujikura Y, Murota K, Uehara M, Minekawa S, Matsui N, Kawamura T, Nemoto H, Terao J (2013) Prenylation enhances quercetin uptake and reduces efflux in Caco-2 cells and enhances tissue accumulation in mice fed long-term. J Nutr 143:1558–1564

    Article  CAS  PubMed  Google Scholar 

  30. Mukai R, Horikawa H, Fujikura Y, Kawamura T, Nemoto H, Nikawa T, Terao J (2012) Prevention of disuse muscle atrophy by dietary ingestion of 8-prenylnaringenin in denervated mice. PLoS ONE 7:e45048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kretzschmar G, Zierau O, Wober J, Tischer S, Metz P, Vollmer G (2010) Prenylation has a compound specific effect on the estrogenicity of naringenin and genistein. J Steroid Biochem Mol Biol 118:1–6

    Article  CAS  PubMed  Google Scholar 

  32. Zhang WY, Lee JJ, Kim Y, Kim IS, Han JH, Lee SG, Ahn MJ, Jung SH, Myung CS (2012) Effect of eriodictyol on glucose uptake and insulin resistance in vitro. J Agric Food Chem 60:7652–7658

    Article  CAS  PubMed  Google Scholar 

  33. Zygmunt K, Faubert B, MacNeil J, Tsiani E (2010) Naringenin, a citrus flavonoid, increases muscle cell glucose uptake via AMPK. Biochem Biophys Res Commun 398:178–183

    Article  CAS  PubMed  Google Scholar 

  34. Huang WJ, Huang CH, Wu CL, Lin JK, Chen YW, Lin CL, Chuang SE, Huang CY, Chen CN (2007) Propolin G, a prenylflavanone, isolated from Taiwanese propolis, induces caspase-dependent apoptosis in brain cancer cells. J Agric Food Chem 55:7366–7376

    Article  CAS  PubMed  Google Scholar 

  35. Shetty M, Loeb JN, Vikstrom K, Ismail-Beigi F (1993) Rapid activation of GLUT-1 glucose transporter following inhibition of oxidative phosphorylation in clone 9 cells. J Biol Chem 268:17225–17232

    Article  CAS  PubMed  Google Scholar 

  36. Rubin D, Ismail-Beigi F (2003) Distribution of Glut1 in detergent-resistant membranes (DRMs) and non-DRM domains: effect of treatment with azide. Am J Physiol Cell Physiol 285:C377–C383

    Article  CAS  PubMed  Google Scholar 

  37. Barros LF, Barnes K, Ingram JC, Castro J, Porras OH, Baldwin SA (2001) Hyperosmotic shock induces both activation and translocation of glucose transporters in mammalian cells. Pflugers Arch 442:614–621

    Article  CAS  PubMed  Google Scholar 

  38. Barnes K, Ingram JC, Porras OH, Barros LF, Hudson ER, Fryer LG, Foufelle F, Carling D, Hardie DG, Baldwin SA (2002) Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J Cell Sci 115:2433–2442

    Article  CAS  PubMed  Google Scholar 

  39. Louters LL, Dyste SG, Frieswyk D, Tenharmsel A, Vander Kooy TO, Walters L, Whalen T (2006) Methylene blue stimulates 2-deoxyglucose uptake in L929 fibroblast cells. Life Sci 78:586–591

    Article  CAS  PubMed  Google Scholar 

  40. Kumar A, Xiao YP, Laipis PJ, Fletcher BS, Frost SC (2004) Glucose deprivation enhances targeting of GLUT1 to lipid rafts in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab 286:E568–E576

    Article  CAS  PubMed  Google Scholar 

  41. Roelofs B, Tidball A, Lindborg AE, TenHarmsel A, Vander Kooy TO, Louters LL (2006) Acute activation of glucose uptake by glucose deprivation in L929 fibroblast cells. Biochimie 88:1941–1946

    Article  CAS  PubMed  Google Scholar 

  42. Jing M, Ismail-Beigi F (2007) Critical role of 5’-AMP-activated protein kinase in the stimulation of glucose transport in response to inhibition of oxidative phosphorylation. Am J Physiol Cell Physiol 292:C477–C487

    Article  CAS  PubMed  Google Scholar 

  43. Jing M, Cheruvu VK, Ismail-Beigi F (2008) Stimulation of glucose transport in response to activation of distinct AMPK signaling pathways. Am J Physiol Cell Physiol 295:C1071–C1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ciaraldi TP, Mudaliar S, Barzin A, Macievic JA, Edelman SV, Park KS, Henry RR (2005) Skeletal muscle GLUT1 transporter protein expression and basal leg glucose uptake are reduced in type 2 diabetes. J Clin Endocrinol Metab 90:352–358

    Article  CAS  PubMed  Google Scholar 

  45. Farese RV, Sajan MP, Standaert ML (2005) Insulin-sensitive protein kinases (atypical protein kinase C and protein kinase B/Akt): actions and defects in obesity and type II diabetes. Exp Biol Med 230:593–605

    Article  CAS  Google Scholar 

  46. Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N, Musi N, Hirshman MF, Goodyear LJ, Moller DE (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fang H, Judd RL (2018) Adiponectin Regulation and Function. Compr Physiol 8:1031–1063

    Article  PubMed  Google Scholar 

  48. Srivastava RA, Pinkosky SL, Filippov S, Hanselman JC, Cramer CT, Newton RS (2012) AMP-activated protein kinase: an emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J Lipid Res 53:2490–2514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Benziane B, Björnholm M, Pirkmajer S, Austin RL, Kotova O, Viollet B, Zierath JR, Chibalin AV (2012) Activation of AMP-activated protein kinase stimulates Na+, K+-ATPase activity in skeletal muscle cells. J Biol Chem 287:23451–23463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu N, Zheng B, Shaywitz A, Dagon Y, Tower C, Bellinger G, Shen CH, Wen J, Asara J, McGraw TE, Kahn BB, Cantley LC (2013) AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol Cell 49:1167–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wright EM (2001) Renal Na(+)-glucose cotransporters. Am J Physiol Renal Physiol 280:F10–F18

    Article  CAS  PubMed  Google Scholar 

  52. Chen J, Williams S, Ho S, Loraine H, Hagan D, Whaley JM, Feder JN (2010) Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members. Diabetes Ther 1:57–92

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Takayuki Yonezawa or Toshiaki Teruya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4064 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natsume, N., Yonezawa, T., Saito, Y. et al. Prenylflavonoids from fruit of Macaranga tanarius promote glucose uptake via AMPK activation in L6 myotubes. J Nat Med 75, 813–823 (2021). https://doi.org/10.1007/s11418-021-01517-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-021-01517-x

Keywords

Navigation