Skip to main content
Log in

Isogeometric analysis of bending, vibration, and buckling behaviors of multilayered microplates based on the non-classical refined shear deformation theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper presents a non-classical refined shear deformation theory model in conjunction with the isogeometric analysis for the static bending, free vibration, and buckling behaviors of multilayered microplates. The modified couple stress theory is used to account for the small-scale effect. Taking a five-layer (Al, P3HT: PCBM, PEDOT: PSS, ITO, and Glass) organic solar cell as an example, it is found that the small-scale effects lead to a decrease in deflection, but an increase in the natural frequency and buckling load. With consideration of the size effect (l/h = 1), the stresses are almost 5 times as much as that without the size effect (l/h = 0). This is why the size effect should be taken into account. Besides, the maximum tensile stress occurs in the ITO layer, which is the dangerous layer. In addition, the normalized deflections increase with increasing aspect ratio, but the normalized natural frequencies and normalized buckling loads decrease with increasing aspect ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Comello, S., Reichelstein, S., Sahoo, A.: The road ahead for solar PV power. Renew. Sustain. Energy Rev. 92, 744–756 (2018)

    Article  Google Scholar 

  2. Guney, M.S.: Solar power and application methods. Renew. Sustain. Energy Rev. 57, 776–785 (2016)

    Article  Google Scholar 

  3. Fukuda, K., Yu, K., Someya, T.: The future of flexible organic solar cells. Adv. Energy Mater. 2000765 (2020)

  4. Duc, N.D., Seung-Eock, K., Quan, T.Q., Long, D.D., Anh, V.M.: Nonlinear dynamic response and vibration of nanocomposite multilayer organic solar cell. Compos. Struct. 184, 1137–1144 (2018)

    Article  Google Scholar 

  5. Li, Q., Wu, D., Gao, W., Tin-Loi, F.: Size-dependent instability of organic solar cell resting on Winkler–Pasternak elastic foundation based on the modified strain gradient theory. Int. J. Mech. Sci. 177, 105306 (2020)

    Article  Google Scholar 

  6. Yang, Z., Yang, J., Liu, A., Fu, J.: Nonlinear in-plane instability of functionally graded multilayer graphene reinforced composite shallow arches. Compos. Struct. 204, 301–312 (2018)

    Article  Google Scholar 

  7. Zhang, A., Wang, B.: Temperature and electric potential fields of an interface crack in a layered thermoelectric or metal/thermoelectric material. Int. J. Therm. Sci. 104, 396–403 (2016)

    Article  Google Scholar 

  8. Shoaee, S., Briscoe, J., Durrant, J.R., Dunn, S.: Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance. Adv. Mater. 26, 263–268 (2014)

    Article  Google Scholar 

  9. SoltanRezaee, M., Bodaghi, M., Farrokhabadi, A., Hedayati, R.: Nonlinear stability analysis of piecewise actuated piezoelectric microstructures. Int. J. Mech. Sci. 160, 200–208 (2019)

    Article  Google Scholar 

  10. Wu, Z., Zhang, Y., Huan, Z.: Solving post-buckling characteristic of thermal-resistance films attached to glass façade via an optimization method. Int. J. Struct. Stab. Dyn. 19, 1950068 (2019)

    Article  MathSciNet  Google Scholar 

  11. Chong, A., Yang, F., Lam, D.C., Tong, P.: Torsion and bending of micron-scaled structures. J. Mater. Res. 16, 1052–1058 (2001)

    Article  Google Scholar 

  12. Stölken, J.S., Evans, A.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)

    Article  Google Scholar 

  13. Ansari, R., Gholami, R.: Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory. Compos. B Eng. 95, 301–316 (2016)

    Article  Google Scholar 

  14. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Toupin, R.: Elastic materials with couple-stresses. (1962)

  16. Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  17. Fleck, N., Hutchinson, J.: A phenomenological theory for strain gradient effects in plasticity. J. Mech. Phys. Solids. 41, 1825–1857 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, B., He, Y., Liu, D., Lei, J., Shen, L., Wang, L.: A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates. Compos. B Eng. 79, 553–580 (2015)

    Article  Google Scholar 

  19. Akgöz, B., Civalek, Ö.: Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48, 863–873 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lu, P., Zhang, P., Lee, H., Wang, C., Reddy, J.: Non-local elastic plate theories. Proc. R. Soc. A Math. Phys. Eng. Sci. 463, 3225–3240 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Papargyri-Beskou, S., Beskos, D.: Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch. Appl. Mech. 78, 625–635 (2008)

    Article  MATH  Google Scholar 

  22. Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids. 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  23. Fleck, N., Hutchinson, J.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids. 49, 2245–2271 (2001)

    Article  MATH  Google Scholar 

  24. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  25. Toupin, R.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11, 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Z., He, Y., Lei, J., Guo, S., Liu, D., Wang, L.: A standard experimental method for determining the material length scale based on modified couple stress theory. Int. J. Mech. Sci. 141, 198–205 (2018)

    Article  Google Scholar 

  27. Tsiatas, G.C.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)

    Article  MATH  Google Scholar 

  28. Jomehzadeh, E., Noori, H., Saidi, A.: The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys. E Low Dimens. Syst. Nanostruct. 43, 877–883 (2011)

    Article  Google Scholar 

  29. Yin, L., Qian, Q., Wang, L., Xia, W.: Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech. Solida Sinica. 23, 386–393 (2010)

    Article  Google Scholar 

  30. Ma, H., Gao, X.-L., Reddy, J.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)

    Article  MATH  Google Scholar 

  31. Gao, X.-L., Huang, J., Reddy, J.: A non-classical third-order shear deformation plate model based on a modified couple stress theory. Acta Mech. 224, 2699–2718 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ansari, R., Rajabiehfard, R., Arash, B.: Nonlocal finite element model for vibrations of embedded multi-layered graphene sheets. Comput. Mater. Sci. 49, 831–838 (2010)

    Article  Google Scholar 

  33. Phadikar, J., Pradhan, S.: Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comput. Mater. Sci. 49, 492–499 (2010)

    Article  Google Scholar 

  34. Liu, S., Yu, T., Bui, T.Q., Xia, S.: Size-dependent analysis of homogeneous and functionally graded microplates using IGA and a non-classical Kirchhoff plate theory. Comp. Struct. 172, 34–44 (2017)

    Article  Google Scholar 

  35. Roque, C., Ferreira, A., Reddy, J.: Analysis of Mindlin micro plates with a modified couple stress theory and a meshless method. Appl. Math. Model. 37, 4626–4633 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shimpi, R.P.: Refined plate theory and its variants. AIAA J. 40, 137–146 (2002)

    Article  Google Scholar 

  37. Hughes, T.J., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bhardwaj, G., Singh, I.V., Mishra, B.K., Bui, T.Q.: Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions. Compos. Struct. 126, 347–359 (2015)

    Article  Google Scholar 

  39. Bui, T.Q., Hirose, S., Zhang, C., Rabczuk, T., Wu, C.T., Saitoh, T., Lei, J.: Extended isogeometric analysis for dynamic fracture in multiphase piezoelectric/piezomagnetic composites. Mech. Mater. 97, 135–163 (2016)

    Article  Google Scholar 

  40. Yin, S., Yu, T., Bui, T.Q., Liu, P., Hirose, S.: Buckling and vibration extended isogeometric analysis of imperfect graded Reissner-Mindlin plates with internal defects using NURBS and level sets. Comput. Struct. 177, 23–38 (2016)

    Article  Google Scholar 

  41. Yu, T., Yin, S., Bui, T.Q., Liu, C., Wattanasakulpong, N.: Buckling isogeometric analysis of functionally graded plates under combined thermal and mechanical loads. Compos. Struct. 162, 54–69 (2017)

    Article  Google Scholar 

  42. Samaniego, E., Anitescu, C., Goswami, S., Nguyen-Thanh, V.M., Guo, H., Hamdia, K., Zhuang, X., Rabczuk, T.: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput. Methods Appl. Mech. Eng. 362, 112790 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  43. Nguyen-Thanh, N., Zhou, K., Zhuang, X., Areias, P., Nguyen-Xuan, H., Bazilevs, Y., Rabczuk, T.: Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling. Comput. Methods Appl. Mech. Eng. 316, 1157–1178 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vu-Bac, N., Duong, T.X., Lahmer, T., Zhuang, X., Sauer, R.A., Park, H., Rabczuk, T.: A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures. Comput. Methods Appl. Mech. Eng. 331, 427–455 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  45. Thai, H.-T., Choi, D.-H.: Analytical solutions of refined plate theory for bending, buckling and vibration analyses of thick plates. Appl. Math. Model. 37, 8310–8323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, S., Yu, T., Lich, L.V., Yin, S., Bui, T.Q.: Size and surface effects on mechanical behavior of thin nanoplates incorporating microstructures using isogeometric analysis. Comput. Struct. 212, 173–187 (2019)

    Article  Google Scholar 

  47. He, L., Lou, J., Zhang, E., Wang, Y., Bai, Y.: A size-dependent four variable refined plate model for functionally graded microplates based on modified couple stress theory. Compos. Struct. 130, 107–115 (2015)

    Article  Google Scholar 

  48. Nguyen, H.X., Nguyen, T.N., Abdel-Wahab, M., Bordas, S.P., Nguyen-Xuan, H., Vo, T.P.: A refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified couple stress theory. Comput. Methods Appl. Mech. Eng. 313, 904–940 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Thai, H.-T., Kim, S.-E.: A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos. B Eng. 45, 1636–1645 (2013)

    Article  Google Scholar 

  50. Thai, H.T., Choi, D.H.: A refined plate theory for functionally graded plates resting on elastic foundation. Compos. Sci. Technol. 71, 1850–1858 (2011)

    Article  Google Scholar 

  51. Liu, S., Yu, T., Bui, T.Q.: Size effects of functionally graded moderately thick microplates: a novel non-classical simple-FSDT isogeometric analysis. Eur. J. Mech. A Solids. 66, 446–458 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Reddy, J.: An introduction to the finite element method. McGraw-Hill, New York (2004)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Innovation Fund of Shenzhen City of China (Project No. JCYJ20170811160538023) and the National Natural Science Foundation of China (Project Nos. 11972133, 11972137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaifa Wang or Baolin Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: a brief on NURBS basis functions

For the sake of completeness, the NURBS basis function is introduced in this section. More details can be found in Refs. [37, 46]. A knot vector, \({\varvec{k}}\left( \xi \right)\), is a set of non-decreasing numbers between zero and one, \({\varvec{k}}\left( \xi \right) = \left\{ {\xi_{1} = 0, \ldots ,\xi_{i} , \ldots ,\xi_{n + p + 1} = 1} \right\}^{{\text{T}}}\) with i representing the knot index, \(\xi_{i}\) is the ith knot, n is the number of basis functions, and p the order of the polynomial [34]. By using the given knot vector \({\varvec{k}}\left( \xi \right)\), the ith B-spline basis function of degree p, termed as \(N_{i,p} \left( \xi \right)\), is defined recursively as follows:

$$N_{i,0} (\xi ) = \left\{ {\begin{array}{*{20}l} 1 \hfill &\quad {{\text{if}}\;\xi_{i} \le \xi < \xi_{i + 1} } \hfill \\ 0 \hfill &\quad {{\text{otherwise}}} \hfill \\ \end{array} } \right.\;{\text{for}}\;p = 0\, ,$$
(A1)

and

$$N_{i,p} (\xi ) = \frac{{\xi - \xi_{i} }}{{\xi_{i + p} - \xi_{i} }}N_{i,p - 1} (\xi ) + \frac{{\xi_{i + p + 1} - \xi }}{{\xi_{i + p + 1} - \xi_{i + 1} }}N_{i + 1,p - 1} (\xi )\;\;{\text{for}}\;\;p \ge 1\, .$$
(A2)

For two-dimensional (2D) problems, the NURBS basis functions can be constructed by taking the tensor product of two 1D B-spline basis functions [37]:

$$R_{i,j}^{p,q} (\xi ,\eta ) = \frac{{N_{i,p} (\xi )N_{j,q} (\eta )w_{i,j} }}{{\sum\nolimits_{i = 1}^{n} {\sum\nolimits_{j = 1}^{m} {N_{i,p} (\xi )N_{j,q} (\eta )w_{i,j} } } }}\, ,$$
(A3)

where wi,j is the weight in 2D; \(N_{i,p} (\xi )\) and \(N_{j,q} (\eta )\), respectively, are the B-spline basis functions of order p in the ξ direction and order q in the η direction; \(N_{j,q} (\eta )\) follows the recursive formula shown in Eq. (13) with knot vector \({\varvec{k}}\left( \eta \right)\). The definition of \({\varvec{k}}\left( \eta \right)\) is the same as that of \({\varvec{k}}\left( \xi \right)\).

In addition, the C2-continuity is required in this paper. The second-order derivatives of the NURBS basis function can be described as [51]

$$\frac{{\partial R_{i,j}^{2p,q} \left( {\xi ,\eta } \right)}}{{\partial \xi^{2} }} = w_{i,j} \frac{{\frac{{\partial^{2} N_{i,p} \left( \xi \right)}}{{\partial \xi^{2} }}N_{j,q} \left( \eta \right)W\left( {\xi ,\eta } \right) - \frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \xi }N_{i,p} \left( \xi \right)N_{j,q} \left( \eta \right)}}{{\left( {W\left( {\xi ,\eta } \right)} \right)^{2} }} - w_{i,j} \frac{{2\left( {\frac{{\partial N_{i,p} \left( \xi \right)}}{\partial \xi }\frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \xi }N_{j,q} \left( \eta \right)W\left( {\xi ,\eta } \right) - \left( {\frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \xi }} \right)^{2} N_{i,p} \left( \xi \right)N_{j,q} \left( \eta \right)} \right)}}{{\left( {W\left( {\xi ,\eta } \right)} \right)^{3} }}\, ,$$
(A4)
$$\frac{{\partial R_{i,j}^{2p,q} \left( {\xi ,\eta } \right)}}{{\partial \eta^{2} }} = w_{i,j} \frac{{\frac{{\partial^{2} N_{j,q} \left( \eta \right)}}{{\partial \eta^{2} }}N_{i,p} \left( \xi \right)W\left( {\xi ,\eta } \right) - \frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \eta }N_{i,p} \left( \xi \right)N_{j,q} \left( \eta \right)}}{{\left( {W\left( {\xi ,\eta } \right)} \right)^{2} }} - w_{i,j} \frac{{2\left( {\frac{{\partial N_{j,q} \left( \eta \right)}}{\partial \eta }\frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \eta }N_{i,p} \left( \xi \right)W\left( {\xi ,\eta } \right) - \left( {\frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \eta }} \right)^{2} N_{i,p} \left( \xi \right)N_{j,q} \left( \eta \right)} \right)}}{{\left( {W\left( {\xi ,\eta } \right)} \right)^{3} }}\, ,$$
(A5)
$$\frac{{\partial R_{i,j}^{2p,q} \left( {\xi ,\eta } \right)}}{\partial \xi \partial \eta } = w_{i,j} \frac{{\frac{{\partial N_{i,p} \left( \xi \right)}}{\partial \xi }\frac{{\partial N_{j,q} \left( \eta \right)}}{\partial \eta }W\left( {\xi ,\eta } \right) + \frac{{\partial N_{i,p} \left( \xi \right)}}{\partial \xi }\frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \eta }N_{j,q} \left( \eta \right)}}{{\left( {W\left( {\xi ,\eta } \right)} \right)^{2} }} - w_{i,j} \frac{{\frac{{\partial^{2} W\left( {\xi ,\eta } \right)}}{\partial \xi \partial \eta }N_{i,p} \left( \xi \right)N_{j,q} \left( \eta \right) + \frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \xi }\frac{{\partial N_{j,q} \left( \eta \right)}}{\partial \eta }N_{i,p} \left( \xi \right)}}{{\left( {W\left( {\xi ,\eta } \right)} \right)^{2} }} - w_{i,j} \frac{{2\left( {\frac{{\partial N_{i,p} \left( \xi \right)}}{\partial \xi }\frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \eta }N_{j,q} \left( \eta \right)W\left( {\xi ,\eta } \right) - \frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \xi }\frac{{\partial W\left( {\xi ,\eta } \right)}}{\partial \eta }N_{i,p} \left( \xi \right)N_{j,q} \left( \eta \right)} \right)}}{{\left( {W\left( {\xi ,\eta } \right)} \right)^{3} }}\, ,$$
(A6)

with

$$\frac{{\partial^{2} W\left( {\xi ,\eta } \right)}}{{\partial \xi^{2} }} = \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{m} {\frac{{\partial^{2} N_{i,p} (\xi )}}{{\partial \xi^{2} }}N_{j,q} (\eta )w_{i,j} } }\, ,$$
(A7)
$$\frac{{\partial^{2} W\left( {\xi ,\eta } \right)}}{{\partial \eta^{2} }} = \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{m} {\frac{{\partial^{2} N_{j,q} (\eta )}}{{\partial \eta^{2} }}N_{i,p} (\xi )w_{i,j} } }\, ,$$
(A8)
$$\frac{{\partial^{2} W\left( {\xi ,\eta } \right)}}{\partial \xi \partial \eta } = \sum\limits_{i = 1}^{n} {\sum\limits_{j = 1}^{m} {\frac{{\partial N_{i,p} (\xi )}}{\partial \xi }\frac{{\partial N_{j,q} (\eta )}}{\partial \eta }w_{i,j} } }\, .$$
(A9)

Appendix B: discrete equations for bending, free vibration, and buckling

The displacements in the middle plane are approximated as

$${\mathbf{u}}^{m} = \sum\limits_{I = 1}^{NP} {R_{I} {\mathbf{u}}_{I} }$$
(B1)

with

$${\mathbf{u}}_{I} = \left[ {\begin{array}{*{20}c} {u_{I} } &\quad {v_{I} } &\quad {w_{bI} } &\quad {w_{sI} } \\ \end{array} } \right]^{T}\, ,$$
(B2)

where NP = (p+1)(q+1) is the number of control points per physical element, RI and uI denote the shape function and the unknown displacement vector at the control point I.

Substituting Eq. (15a) into both Eqs. (7) and (9), one can obtain

$${{\varvec{\upvarepsilon}}}_{0} = \sum\limits_{I = 1}^{{{\text{NP}}}} {{\mathbf{B}}_{I}^{0} } {\mathbf{u}}_{I} ,\;{{\varvec{\upvarepsilon}}}_{1} = \sum\limits_{I = 1}^{{{\text{NP}}}} {{\mathbf{B}}_{I}^{1} } {\mathbf{u}}_{I} ,\;{{\varvec{\upvarepsilon}}}_{2} = \sum\limits_{I = 1}^{{{\text{NP}}}} {{\mathbf{B}}_{I}^{2} } {\mathbf{u}}_{I} ,\;{{\varvec{\upvarepsilon}}}_{3} = \sum\limits_{I = 1}^{{{\text{NP}}}} {{\mathbf{B}}_{I}^{3} } {\mathbf{u}}_{I}\, ,$$
(B3)
$${{\varvec{\upchi}}}_{0} = \sum\limits_{I = 1}^{{{\text{NP}}}} {{\mathbf{B}}_{I}^{4} } {\mathbf{u}}_{I} ,\;{{\varvec{\upchi}}}_{1} = \sum\limits_{I = 1}^{{{\text{NP}}}} {{\mathbf{B}}_{I}^{5} } {\mathbf{u}}_{I} ,\;{{\varvec{\upchi}}}_{2} = \sum\limits_{I = 1}^{{{\text{NP}}}} {{\mathbf{B}}_{I}^{6} } {\mathbf{u}}_{I} ,\;{{\varvec{\upchi}}}_{3} = \sum\limits_{I = 1}^{{{\text{NP}}}} {{\mathbf{B}}_{I}^{7} } {\mathbf{u}}_{I}\, ,$$
(B4)
$${\mathbf{B}}_{I}^{0} = \left[ {\begin{array}{*{20}c} {R_{I,x} } & 0 & 0 & 0 \\ 0 & {R_{I,y} } & 0 & 0 \\ {R_{I,y} } & {R_{I,x} } & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right],\;{\mathbf{B}}_{I}^{1} = \left[ {\begin{array}{*{20}c} 0 & 0 & { - R_{I,xx} } & 0 \\ 0 & 0 & { - R_{I,yy} } & 0 \\ 0 & 0 & { - 2R_{I,xy} } & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right]\, ,$$
(B5)
$${\mathbf{B}}_{I}^{2} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & { - R_{I,xx} } \\ 0 & 0 & 0 & { - R_{I,yy} } \\ 0 & 0 & 0 & { - 2R_{I,xy} } \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right],\;{\mathbf{B}}_{I}^{3} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & {R_{I,x} } \\ 0 & 0 & 0 & {R_{I,y} } \\ \end{array} } \right]\, ,$$
(B6)
$${\mathbf{B}}_{I}^{4} = \left[ {\begin{array}{*{20}c} 0 & 0 & {R_{I,xy} } & 0 \\ 0 & 0 & { - R_{I,xy} } & 0 \\ 0 & 0 & {0.5\left( {R_{I,yy} - R_{I,xx} } \right)} & 0 \\ \end{array} } \right],\;{\mathbf{B}}_{I}^{5} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & {R_{I,xy} } \\ 0 & 0 & 0 & { - R_{I,xy} } \\ 0 & 0 & 0 & {0.5\left( {R_{I,yy} - R_{I,xx} } \right)} \\ \end{array} } \right]\, ,$$
(B7)
$${\mathbf{B}}_{I}^{6} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & {R_{I,y} } \\ 0 & 0 & 0 & { - R_{I,x} } \\ \end{array} } \right],\;{\mathbf{B}}_{I}^{7} = \left[ {\begin{array}{*{20}c} { - R_{I,xy} } & {R_{I,xx} } & 0 & 0 \\ { - R_{I,yy} } & {R_{I,xy} } & 0 & 0 \\ \end{array} } \right]\, .$$
(B8)

The strain energy of the OSC microplate is

$$\delta U = \int_{\Omega } {\left( {{{\varvec{\upsigma}}}^{{\text{T}}} \delta {{\varvec{\upvarepsilon}}} + {\mathbf{m}}^{{\text{T}}} \delta {{\varvec{\upchi}}}} \right){\text{d}}\Omega }\, .$$
(B9)

The virtual work done by external forces is

$$\delta W = - \int_{\Omega } {\left[ {q_{z} \delta \left( {w_{b} + w_{s} } \right) + N_{ij}^{0} \left( {w_{{b,x_{i} }} + w_{{s,x_{i} }} } \right)\left( {\delta w_{{b,x_{j} }} + \delta w_{{s,x_{j} }} } \right)} \right]{\text{d}}\Omega } \;\;\;\left( {i,j = 1,2} \right)\, ,$$
(B10)

where \(N_{ij}^{0}\) and qs are in-plane critical buckling load and applied transverse loading, x1 and x2 represent x and y, respectively.

The variation of the kinetic energy of the mass system is written as

$$\delta K = \int_{\Omega } {\left( {\delta u^{{\text{T}}} \overline{m}\ddot{u}} \right)d\Omega }\, .$$
(B11)

According to Hamilton’s principle, we have

$$0 = \int_{0}^{t} {\left( {\delta U + \delta W - \delta K} \right)} {\text{d}}t\, .$$
(B12)

Substituting Eqs. (B3)–(B11) into Eq. (B12), and applying the weak formulation [52], then we can obtain the weak form for static deformation, free vibration, and buckling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, K., Wang, B. et al. Isogeometric analysis of bending, vibration, and buckling behaviors of multilayered microplates based on the non-classical refined shear deformation theory. Acta Mech 232, 2991–3010 (2021). https://doi.org/10.1007/s00707-021-02992-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02992-9

Navigation