Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Mini Review on Emerging Targets and Approaches for the Synthesis of Anti-viral Compounds: In Perspective to COVID-19

Author(s): Maheswara Rao Gokada, Visweswara Rao Pasupuleti* and Hari Babu Bollikolla*

Volume 21, Issue 10, 2021

Published on: 04 January, 2021

Page: [1173 - 1181] Pages: 9

DOI: 10.2174/1389557521666210104165733

Price: $65

Abstract

The novel Coronavirus disease (COVID-19) is an epidemic disease that appeared at the end of the year 2019 with a sudden increase in number and came to be considered as a pandemic disease caused by a viral infection which has threatened most countries for an emergency search for new anti-SARS-COV drugs /vaccines. At present, the number of clinical trials is ongoing worldwide on different drugs i.e. Hydroxychloroquine, Remedisvir, Favipiravir that utilize various mechanisms of action. A few countries are currently processing clinical trials, which may result in a positive outcome. Favipiravir (FPV) represents one of the feasible treatment options for COVID-19, if the result of the trials turns out positive. Favipiravir will be one of the developed possibly authoritative drugs to warrant benefits to mankind with large-scale production to meet the demands of the current pandemic Covid-19 outbreak and future epidemic outbreaks. In this review, the authors tried to explore key molecules, which will be supportive for devising COVID-19 research.

Keywords: Coronavirus, hydroxychloroquine, remedisvir, favipiravir, mechanism of action, COVID-19.

Graphical Abstract
[1]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[2]
Guo, D. Old weapon for new enemy: Drug repurposing for treatment of newly emerging viral diseases. Virol. Sin., 2020, 35(3), 253-255.
[http://dx.doi.org/10.1007/s12250-020-00204-7] [PMID: 32048130]
[3]
Liu, W.; Zhu, H.L.; Duan, Y. Effective chemicals against novel Coronavirus (COVID-19) in China. Curr. Top. Med. Chem., 2020, 20(8), 603-605.
[http://dx.doi.org/10.2174/1568026620999200305145032] [PMID: 32133962]
[4]
Banerjee, A.K.; Arora, N. Coronavirus disease (COVID-19) pandemic: A race against time. Curr. Top. Med. Chem., 2020, 20(16), 1434-1437.
[http://dx.doi.org/10.2174/1568026620999200413145654] [PMID: 32282303]
[5]
Lushington, G.H. Perspective on the COVID-19 coronavirus outbreak. Comb. Chem. High Throughput Screen., 2020, 23(2), 90-91.
[http://dx.doi.org/10.2174/138620732302200406130010] [PMID: 32284037]
[6]
Ravi, V.; Haribabu, B. Unfortunate welcome of evil COVID-19 in 2020: From despair to hope. Coronaviruses, 2020, 1, 11-14.
[7]
Mifsud, E.J.; Hayden, F.G.; Hurt, A.C. Antivirals targeting the polymerase complex of influenza viruses. Antiviral Res., 2019, 169104545
[http://dx.doi.org/10.1016/j.antiviral.2019.104545] [PMID: 31247246]
[8]
Michele, C. Maria Anna. R. D. G.; Giovanni, N. R. Recent reports on antiviral therapies based on Lopinavir/Ritonavir, Darunavir/Umifenovir, Hydroxychloroquine, Remdesivir, Favipiravir and other drugs for the treatment of the new coronavirus. Curr. Med. Chem., 2020, 27, 1-6.
[9]
Batalha, P.N. da S M Forezi, L.; Tolentino, N.M.C.; Sagrillo, F.S.; de Oliveira, V.G.; de Souza, M.C.B.V.; da C S Boechat, F. Luana da, S. M.; Forezi, N. M. D. C. T; Fernanda, S. S.; Vanessa, G. D. O.; Maria, C. B. V. D. S.; Fernanda da, C. S. B. 4-Oxoquinoline derivatives as antivirals: A ten years overview. Curr. Top. Med. Chem., 2020, 20(3), 244-255.
[http://dx.doi.org/10.2174/1568026620666200129100219] [PMID: 31995008]
[10]
Akinwunmi, O.A.; Babatunde, J.O.; Iqe, F.O.; Habibu, T.; Ahmed, I.A. Repurposing of chloroquine and some clinically approved anti-viral drugs as therapeutics to prevent cellar entry and replication of corona virus. J. Biomol. Struct. Dyn., 2020, 1-9.
[11]
Han, M.; Zhao, X.; Wu, X.; Huang, W.; Li, X.; Yu, F. Xu, Zhao.; Xuedong, W.; Wei, H.;Xingzhou, L.; Fang, Y. Synthesis of a novel class of 1,3-oxathiolane nucleoside derivatives of T-705 and evaluation of their anti-influenza A virus and anti-HIV activity. Med. Chem., 2018, 14(6), 595-603.
[http://dx.doi.org/10.2174/1573406414666180112102225] [PMID: 29332597]
[12]
Mohamed, S.F.; Abbas, E.M.H.; Khalaf, H.S.; Farghaly, T.A.; Abd El-Shafy, D.N.; Abd, E.I.S. Triazolopyrimidines and thiazolopyrimidines: Synthesis anti-HSV-1 cytotoxicity and mechanism of action. Mini Rev. Med. Chem., 2018, 18(9), 794-802.
[http://dx.doi.org/10.2174/1389557518666171207161542] [PMID: 29219053]
[13]
Bråve, A.; Ljungberg, K.; Wahren, B.; Liu, M.A. Vaccine delivery methods using viral vectors. Mol. Pharm., 2007, 4(1), 18-32.
[http://dx.doi.org/10.1021/mp060098+] [PMID: 17274663]
[14]
Oestereich, L.; Lüdtke, A.; Wurr, S.; Rieger, T.; Muñoz-Fontela, C.; Günther, S. Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Res., 2014, 105, 17-21.
[http://dx.doi.org/10.1016/j.antiviral.2014.02.014] [PMID: 24583123]
[15]
Zhang, J.; Hu, Y.; Musharrafieh, R.; Yin, H.; Wang, J. Focusing on the influenza virus polymerase complex: Recent progress in drug discovery and assay development. Curr. Med. Chem., 2019, 26(13), 2243-2263.
[http://dx.doi.org/10.2174/0929867325666180706112940] [PMID: 29984646]
[16]
Qingxian, C.; Yang, D.; Liu, J.C.; Shu, D.J.; Xia, X.L. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering, 2020, 6(10), 1192-1198.
[http://dx.doi.org/10.1016/j.eng.2020.03.007]
[17]
Gerald, H.L. Perspective on the COVID-19 coronavirus outbreak. Comb. Chem. High Throughput Screen., 2020, 23(2), 90-91.
[18]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[19]
Mehta, N.; Mazer-Amirshahi, M.; Alkindi, N.; Pourmand, A. Pharmacotherapy in COVID-19; A narrative review for emergency providers. Am. J. Emerg. Med., 2020, 38(7), 1488-1493.
[http://dx.doi.org/10.1016/j.ajem.2020.04.035] [PMID: 32336586]
[20]
Liotta, D.C.; Painter, G.R. Discovery and development of the anti-human immunodeficiency virus drug, emtricitabine (Emtriva, FTC). Acc. Chem. Res., 2016, 49(10), 2091-2098.
[http://dx.doi.org/10.1021/acs.accounts.6b00274] [PMID: 27704821]
[21]
World Health Organization- Coronavirus disease (COVID-19) Situation Report – 103..
[22]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[23]
Rashad, A.A.; Mahalingam, S.; Keller, P.A. Chikungunya virus: Emerging targets and new opportunities for medicinal chemistry. J. Med. Chem., 2014, 57(4), 1147-1166.
[http://dx.doi.org/10.1021/jm400460d] [PMID: 24079775]
[24]
Schneider-Futschik, E.K.; Hoyer, D.; Khromykh, A.A.; Baell, J.B.; Marsh, G.A.; Baker, M.A.; Li, J.; Velkov, T. Contemporary anti-ebola drug discovery approaches and platforms. ACS Infect. Dis., 2019, 5(1), 35-48.
[http://dx.doi.org/10.1021/acsinfecdis.8b00285] [PMID: 30516045]
[25]
Chary, M.A.; Barbuto, A.F.; Izadmehr, S.; Hayes, B.D.; Burns, M.M. COVID-19: Therapeutics and their toxicities. J. Med. Toxicol., 2020, 16(3), 284-294.
[http://dx.doi.org/10.1007/s13181-020-00777-5] [PMID: 32356252]
[26]
Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese Center for Disease Control and Prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[27]
De Clercq, E. Fifty years in search of selective anti-viral drugs. J. Med. Chem., 2019, 62(16), 7322-7339.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00175] [PMID: 30939009]
[28]
DhurvasChandrasekharan, D.; Selvaraj, T.; Kaushik, R.; Evzen, B. Anti-viral drug targets of single-stranded RNA viruses causing chronic human diseases. Curr. Drug Targets, 2020, 21(2), 105-124.
[http://dx.doi.org/10.2174/1389450119666190920153247] [PMID: 31538891]
[29]
Shanmugaraj, B.; Malla, A.; Phoolcharoen, W. Emergence of novel coronavirus 2019-nCoV: Need for rapid vaccine and biologics development. Pathogens, 2020, 9(2), 148.
[http://dx.doi.org/10.3390/pathogens9020148] [PMID: 32098302]
[30]
Karimi, M.; Bolandian, M. MirzaeiNodoushan, M. A. Review on the mechanisms involved in the immunopathogenesis of SARS-CoV-2. J. Mil. Med., 2020, 22(2), 147-160.
[31]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil. Med. Res., 2020, 7(1), 1-10.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 31928528]
[32]
Malik, Y.A. Properties of coronavirus and SARS-CoV-2. Malays. J. Pathol., 2020, 42(1), 3-11.
[PMID: 32342926]
[33]
Astuti, I. Ysrafil, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab. Syndr., 2020, 14(4), 407-412.
[http://dx.doi.org/10.1016/j.dsx.2020.04.020] [PMID: 32335367]
[34]
Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med., 2020, 46(4), 586-590.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[35]
Yang, X.; Ou, C.; Yang, H.; Liu, L.; Song, T.; Kang, M.; Lin, H.; Hang, J. Transmission of pathogen-laden expiratory droplets in a coach bus. J. Hazard. Mater., 2020, 397122609
[http://dx.doi.org/10.1016/j.jhazmat.2020.122609] [PMID: 32361671]
[36]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109102433
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[37]
Takamatsu, T.; Yonezawa, K. EP219117A1..
[38]
Zhang, T.; Kong, L.; Li, Z.; Yuan, H.; Xu, W. Synthesis of favipiravir. Chin. J. Pharm., 2013, 44(9), 841-844.
[39]
Furuta, Y.; Egawa, H. Nitrogenous heterocyclic carboxamide derivative or salts thereof and antiviral agents containing both. WO 2000/010569 A1, 2000.
[40]
Hara, T.; Norimatsu, N.; Kurushima, H.; Kano, T. Method for producing dichloropyrazine derivative. US 20110275817A1,,
[41]
Guo, Q.; Xu, M.; Guo, H.; Zhu, F.; Xie, Y.; Shen, J. The complete synthesis of favipiravir from 2-aminopyrazine. Chem. Pap., 2019, 73, 1043-1051.
[http://dx.doi.org/10.1007/s11696-018-0654-9]
[42]
The synthesis technique of Favipiravir. CN 106478528 A and CN107226794.
[43]
Shi, F.; Li, Z.; Kong, L.; Xie, Y.; Zhang, T.; Xu, W. Synthesis and crystal structure of 6-fluoro-3-hydroxypyrazine-2-carboxamide. Drug Discov. Ther., 2014, 8(3), 117-120.
[http://dx.doi.org/10.5582/ddt.2014.01028] [PMID: 25031043]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy