Skip to main content
Log in

Exogenous EBL (24-Epibrassinolide) Alleviate Cold Damage in Strawberry

Reduzierung von Kälteschäden bei Erdbeeren durch Behandlungen mit 24-Epibrassinolid (EBL)

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Low temperature constitutes one of the major threats in horticulture and is adversely affecting fruit production worldwide. Plant hormones, including 24-Epibrassinolide (EBL), may mitigate the malignant effects of cold stress on plants. We investigated the influences of EBL application on protein and proline content, lipid peroxidation and organic and phenolic acids of strawberry plant under cold stress. Two days before the chilling stress, three different EBL doses (1, 2 and 4 mM) were treated once (in August) to plant rhizoplane (above plant parts of soil) as solution except control. To perform chilling treatment, the plants were transferred to a cold storage from the greenhouse. Storage temperature decreased from 15 °C to 7 °C step by step and plants were hold 24 h at 7 °C. End of the study, 4 mM EBL decreased protein content in leaf and root, while it increased in stem. Among tissues of strawberry plant, higher accumulation of malondialdehyde (MDA) was observed in leaves, therefore it can be accepted that leaves are more vulnerable than stems and roots. Different EBL doses enhanced phenolic acids compared to control. The predominant phenolic acid was chlorogenic acid. EBL application increased organic acids except oxalic and malic acids compared to control. The main organic acid found in strawberry leaves exposed to cold stress in the current experiment was malic acid followed by citric and tartaric acids. Our results demonstrated that EBL alleviated the deleterious effects of cold stress in strawberry plant may be due to organic and phenolic acids and maintaining cell membrane integrity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aras S, Eşitken A (2013) Effects of antifreeze proteins and glycine betaine on strawberry plants for resistance to cold temperature. In: Proceedings of International Conference on Agriculture and Biotechnology Malaysia, pp 29–30

    Google Scholar 

  • Aras S, Arıkan Ş, İpek M, Eşitken A, Pırlak L, Dönmez MF, Turan M (2018) Plant growth promoting rhizobacteria enhanced leaf organic acids, FC‑R activity and Fe nutrition of apple under lime soil conditions. Acta Physiol Plant 40(6):120

    Article  CAS  Google Scholar 

  • Arora A, Byrem TM, Nair MG, Strasburg GM (2000) Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. Arch Biochem Biophys 373(1):102–109

    Article  CAS  PubMed  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bhandari MR, Kawabata J (2004) Organic acid, phenolic content and antioxidant activity of wild yam (Dioscorea spp.) tubers of Nepal. Food Chem 88(2):163–168

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Cao YY, Yang MT, Li X, Zhou ZQ, Wang XJ, Bai JG (2014) Exogenous sucrose increases chilling tolerance in cucumber seedlings by modulating antioxidant enzyme activity and regulating proline and soluble sugar contents. Sci Hortic 179:67–77

    Article  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Das P, Manna I, Sil P, Bandyopadhyay M, Biswas AK (2019) Exogenous silicon alters organic acid production and enzymatic activity of TCA cycle in two NaCl stressed indica rice cultivars. Plant Physiol Biochem 136:76–91

    Article  CAS  PubMed  Google Scholar 

  • Fariduddin Q, Yusuf M, Chalkoo S, Hayat S, Ahmad A (2011) 28-homobrassinolide improves growth and photosynthesis in Cucumis sativus L. through an enhanced antioxidant system in the presence of chilling stress. Photosynthetica 49(1):55–64

    Article  CAS  Google Scholar 

  • Gao H, Zhang Z, Lv X, Cheng N, Peng B, Cao W (2016) Effect of 24-epibrassinolide on chilling injury of peach fruit in relation to phenolic and proline metabolisms. Postharvest Biol Technol 111:390–397

    Article  CAS  Google Scholar 

  • Ghasemzadeh A, Ghasemzadeh N (2011) Flavonoids and phenolic acids: Role and biochemical activity in plants and human. J Med Plants Res 5(31):6697–6703

    CAS  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21(2):79–102

    Article  CAS  Google Scholar 

  • Hare PD, Cress WA, Van Staden J (1999) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84:55–60

    Google Scholar 

  • Jiang W, Bai J, Yang X, Yu H, Liu Y (2012) Exogenous application of abscisic acid, putrescine, or 2, 4‑epibrassinolide at appropriate concentrations effectively alleviate damage to tomato seedlings from suboptimal temperature stress. HortTechnology 22(1):137–144

    Article  CAS  Google Scholar 

  • Jiang YP, Huang LF, Cheng F, Zhou YH, Xia XJ, Mao WH, Shi K, Yu JQ (2013) Brassinosteroids accelerate recovery of photosynthetic apparatus from cold stress by balancing the electron partitioning, carboxylation and redox homeostasis in cucumber. Physiol Plant 148(1):133–145

    Article  CAS  PubMed  Google Scholar 

  • Jiménez S, Ollat N, Deborde C, Maucourt M, Rellán-Álvarez R, Moreno MÁ, Gogorcena Y (2011) Metabolic response in roots of Prunus rootstocks submitted to iron chlorosis. J Plant Physiol 168(5):415–423

    Article  PubMed  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere—a critical review. Plant Soil 205(1):25–44

    Article  CAS  Google Scholar 

  • Kim D, Jeond S, Lee C (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326

    Article  CAS  Google Scholar 

  • Li B, Zhang C, Cao B, Qin G, Wang W, Tian S (2012) Brassinolide enhances cold stress tolerance of fruit by regulating plasma membrane proteins and lipids. Amino Acids 43(6):2469–2480

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Yang B, Kallio H (2010) Characterization of phenolic compounds in Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit by high performance liquid chromatography–electrospray ionization mass spectrometry. Food Chem 121(4):1188–1197

    Article  CAS  Google Scholar 

  • Liu ZJ, Zhang XL, Bai JG, Suo BX, Xu PL, Wang L (2009) Exogenous paraquat changes antioxidant enzyme activities and lipid peroxidation in drought stressed cucumber leaves. Sci Hortic 121:138–143

    Article  CAS  Google Scholar 

  • Lopez-Bucio J, Nieto-Jacobo MF, Ramırez-Rodriguez V, Herrera-Estrella L (2000) Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Sci 160(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Madhava RKV, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stress. Plant Sci 157:113–128

    Article  Google Scholar 

  • Marino G, Beghelli S, Rombolà AD, Cabrini L (2000) In vitro performance at high culture pH and in vivo responses to Fe-deficiency of leaf-derived quince BA 29 (Cydonia oblonga) somaclones regenerated at variable medium pH. J Hortic Sci Biotechnol 75(4):433–440

    Article  CAS  Google Scholar 

  • Michalak A (2006) Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud 15(4):523–530

    CAS  Google Scholar 

  • Milić BL, Djilas SM, Čanadanović-Brunet JM (1998) Antioxidative activity of phenolic compounds on the metal-ion breakdown of lipid peroxidation system. Food Chem 61(4):443–447

    Article  Google Scholar 

  • Öztürk N, Tunçel M (2011) Assessment of phenolic acid content and in vitro antiradical characteristics of hawthorn. J Med Food 14(6):664–669

    Article  PubMed  CAS  Google Scholar 

  • Pennycooke JC, Cox S, Stushnoff C (2005) Relationship of cold acclimation, total phenolic content and antioxidant capacity with chilling tolerance in petunia (Petunia× hybrida). Environ Exp Bot 53(2):225–232

    Article  CAS  Google Scholar 

  • Prasad TK, Anderson MD, Martin BA, Stewart CR (1994) Evidence for chilling-induced oxidative stress in maize seedlings and a regulatory role for hydrogen peroxide. Plant Cell 6:65–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu T, Liu R, Wang W, An L, Chen T, Liu G, Zhao Z (2011) Brassinosteroids regulate pectin methylesterase activity and AtPME41 expression in Arabidopsis under chilling stress. Cryobiology 63(2):111–117

    Article  CAS  PubMed  Google Scholar 

  • Rice-Evans C, Miller N, Paganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2(4):152–159

    Article  Google Scholar 

  • Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sánchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160(2):315–321

    Article  CAS  PubMed  Google Scholar 

  • Sasse JM (2003) Physiological actions of brassinosteroids: an update. J Plant Growth Regul 22:276–288

    Article  CAS  PubMed  Google Scholar 

  • Serna M, Hernández F, Coll F, Coll Y, Amorós A (2013) Effects of brassinosteroid analogues on total phenols, antioxidant activity, sugars, organic acids and yield of field grown endive (Cichorium endivia L.). J Sci Food Agric 93(7):1765–1771

    Article  CAS  PubMed  Google Scholar 

  • Singleton VL, Rossi JR (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Stress physiology. In: Bressan RA, Locy RB (eds) Plant physiology. Sinauer Associates Press, Sunderland, pp 591–614

    Google Scholar 

  • Wu XX, Ding HD, Chen JL, Zhu ZW, Zha DS (2015) Amelioration of oxidative damage in Solanum melongena seedlings by 24-epibrassinolide during chilling stress and recovery. Biol Plantarum 59(2):350–356

    Article  CAS  Google Scholar 

  • Wu XX, He J, Zhu ZW, Yang SJ, Zha DS (2014) Protection of photosynthesis and antioxidative system by 24-epibrassinolide in Solanum melongena under cold stress. Biol Plantarum 58(1):185–188

    Article  CAS  Google Scholar 

  • Xi Z, Wang Z, Fang Y, Hu Z, Hu Y, Deng M, Zhang Z (2013) Effects of 24-epibrassinolide on antioxidation defense and osmoregulation systems of young grapevines (V. vinifera L.) under chilling stress. Plant Growth Regul 71(1):57–65

    Article  CAS  Google Scholar 

  • Yong Z, Hao-Ru T, Ya L (2008) Variation in antioxidant enzyme activities of two strawberry cultivars with short-term low temperature stress. World J Agric Sci 4(4):458–462

    Google Scholar 

  • Zhou YL, Huo SF, Wang LT, Meng JF, Zhang ZW, Xi ZM (2018) Exogenous 24-Epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physiol Biochem 130:555–565

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Servet Aras.

Ethics declarations

Conflict of interest

G. Balcı, S. Aras and H. Keles declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balcı, G., Aras, S. & Keles, H. Exogenous EBL (24-Epibrassinolide) Alleviate Cold Damage in Strawberry. Erwerbs-Obstbau 63, 273–278 (2021). https://doi.org/10.1007/s10341-021-00566-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-021-00566-6

Keywords

Schlüsselwörter

Navigation