Skip to main content
Log in

Statistics of GPS TEC at the northern EIA crest region of the Indian subcontinent during the solar cycle 24 (2013-2018): comparison with IRI-2016 and IRI-2012 models

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In this study the statistics of ionospheric total electron content (TEC), derived from a GSV4004B dual-frequency Global Positioning System (GPS) receiver at Agartala station (23.450°N, 91.150°E) located in northern equatorial ionization anomaly (EIA) crest region of the Indian subcontinent, is reported with a performance analysis of IRI-2016 and IRI-2012 models during the ascending, maxima, declining and minima phases (2013-2018) of the solar cycle 24. Variations of model total electron content, as obtained from the IRI-2016 and IRI-2012 for the three options of topside electron density namely NeQuick, IRI 2001 and IRI 01-corr, are compared with the observed total electron content during different periods of interest viz. monthly, seasonal, annual and the correlations with solar activity parameters viz. sunspot number (SSN), 10.7 cm solar radio flux (F10.7), solar EUV flux, are also investigated. All the three options of IRI-2016 and IRI-2012 models show an earlier occurrence of diurnal maximum total electron content, as compared to the observed diurnal maximum GPS total electron content, throughout all the months during the complete period of observation. As the solar activity decreases (from 2015 to 2018), the model starts underestimating GPS total electron content, which becomes significantly high during the very low solar activity period of 2017-18 for all the months. IRI-2016 model underestimates the GPS total electron content before the hours of diurnal maximum and overestimates after the hours of diurnal maximum in the years from 2013-2018. IRI-2012 model underestimates the GPS total electron content before the hours of diurnal maximum and overestimates after the hours of diurnal maximum in the years from 2013-17 but overestimate during the whole day in the year of 2018. Overestimation by IRI-2012 is much more than that by IRI-2016 in the year of 2018. Predictions given by IRI-2016 are better than that given by IRI-2012 for our region. The seasonal mean maximum total electron content values are highest during the spring equinox months and lowest during the winter months except the year of 2014 and 2013. The correlation analysis, between the GPS total electron content and solar indices, show that the correlation coefficient is higher for the solar EUV flux, as compared to the sunspot number (SSN) and 10.7 cm solar radio flux (F10.7).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aggarwal, M.: TEC variability near northern EIA crest and comparison with IRI model. Adv. Space Res. 48(7), 1221–1231 (2011)

    Article  ADS  Google Scholar 

  • Anderson, D.N., Mendillo, M., Herniter, B.C.: A semi-empirical low-latitude ionospheric model. Radio Sci. 22(2), 292–306 (1987). https://doi.org/10.1029/RS022i002p00292

    Article  ADS  Google Scholar 

  • Bhuyan, P., Borah, R.R.: TEC derived from GPS network in India and comparison with the IRI. Adv. Space Res. 39(5), 830–840 (2007)

    Article  ADS  Google Scholar 

  • Bhuyan, P.K., Hazarika, R.: GPS TEC near the crest of the EIA at 950 E during the ascending half of solar cycle 24 and comparison with IRI simulations. Adv. Space Res. 52, 1247–1260 (2013)

    Article  ADS  Google Scholar 

  • Bilitza, D.: International reference ionosphere: recent developments. Radio Sci. 21, 343–346 (1986)

    Article  ADS  Google Scholar 

  • Bilitza, D.: International reference ionosphere 1990. NSSDC/WDC-A-R&S 90-22, National Space Science Data Center, Greenbelt (1990)

  • Bilitza, D.: International reference ionosphere 2000. Radio Sci. 36(2), 261–275 (2001). https://doi.org/10.1029/2000RS002432

    Article  ADS  Google Scholar 

  • Bilitza, D., Reinisch, B.W.: International reference ionosphere 2007: improvements and new parameters. Adv. Space Res. 42(4), 599–609 (2008). https://doi.org/10.1016/j.asr.2007.07.048

    Article  ADS  Google Scholar 

  • Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., McKinnell, L.A., Reinisch, B.: The international reference ionosphere 2012, a model of international collaboration. J. Space Weather Space Clim. 4, A07 (2014). https://doi.org/10.1051/swsc/2014004

    Article  Google Scholar 

  • Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., Huang, X.: International reference ionosphere 2016: from ionospheric climate to real time weather predictions. Space Weather 15, 418–429 (2017). https://doi.org/10.1002/2016SW001593

    Article  ADS  Google Scholar 

  • Chakraborty, M., Kumar, S., De, B.K., Guha, A.: Latitudinal characteristics of GPS derived ionospheric TEC: a comparative study with IRI 2012 model. Ann. Geophys. 57(5), A0539 (2014). https://doi.org/10.4401/ag-6438

    Article  Google Scholar 

  • Chen, Y., Liu, L., Wan, W., Ren, Z.: Equinoctial asymmetry in solar activity variations of NmF2 and TEC. Ann. Geophys. 30, 613–622 (2012). https://doi.org/10.5194/angeo-30-613-2012

    Article  ADS  Google Scholar 

  • Coïsson, P., Radicella, S.M., Nava, B., Leitinger, R.: Low and equatorial latitudes topside in NeQuick. J. Atmos. Sol.-Terr. Phys. 70, 901–906 (2008). https://doi.org/10.1016/j.jastp.2007.05.017

    Article  ADS  Google Scholar 

  • Dabas, R.S., Bhuyan, P.K., Tyagi, T.R., Bhardwaj, R.K., Lal, J.B.: Day-to-day changes in ionospheric electron content at low latitudes. Radio Sci. 19(3), 749–756 (1984). https://doi.org/10.1029/RS019i003p00749

    Article  ADS  Google Scholar 

  • Daniell, R.E. Jr., Brown, L.D., Anderson, D.N., Fox, M.W., Doherty, P.H., Decker, D.T., Sojka, J.J., Schunk, R.W.: Parameterized ionospheric model: a global ionospheric parameterization based on first principles models. Radio Sci. 30(5), 1499–1510 (1995)

    Article  ADS  Google Scholar 

  • Dayanandan, B., Paul, B., Galav, P.: Ionospheric response to the second strongest geomagnetic storm of the solar cycle 24: first results from the Arabian peninsula. In: IEEE International Conference on Wireless for Space and Extreme Environments (2020). https://doi.org/10.1109/WiSEE44079.2020.9262692

    Chapter  Google Scholar 

  • Dutta, B., Kalita, B.R., Bhuyan, P.K.: L-band nighttime scintillations at the northern edge of the EIA along 95° E during the ascending half of the solar cycle 24. Adv. Space Res. 61, 1744–1760 (2018)

    Article  ADS  Google Scholar 

  • Guha, A., Paul, B., Chakraborty, M., De, B.K.: Tropical cyclone effects on the equatorial ionosphere - first result from the Indian sector. J. Geophys. Res. Space Phys. 12(6), 5764–5777 (2016)

    Article  ADS  Google Scholar 

  • Hazarika, R., Bhuyan, P.K.: Spatial distribution of TEC across India in 2005: seasonal asymmetries and IRI prediction. Adv. Space Res. 54(9), 1751–1767 (2014). http://www.sciencedirect.com/science/article/pii/S0273117714004359

    Article  ADS  Google Scholar 

  • Jonah, O.F., De Paula, E. R., Muella, M.T.A.H., Dutra, S.L.G., Kherani, E.A., Negreti, P.M.S., Otsuka, Y.: TEC variation during high and low solar activities over South American sector. J. Atmos. Sol.-Terr. Phys. 135, 22–35 (2015). https://doi.org/10.1016/j.jastp.2015.10.005

    Article  ADS  Google Scholar 

  • Kakoti, G., Bhuyan, P.K., Hazarika, R.: Seasonal and solar cycle effects on TEC at 950 E in the ascending half (2009–2014) of the subdued solar cycle 24: consistent underestimation by IRI 2012. Adv. Space Res. 60, 257–275 (2016). https://doi.org/10.1016/j.asr.2016.09.002

    Article  ADS  Google Scholar 

  • Karia, S.P., Patel, N.C., Pathak, K.N.: Comparison of GPS based TEC measurements with the IRI-2012 model for the period of low to moderate solar activity (2009–2012) at the crest of equatorial anomaly in Indian region. Adv. Space Res. 55(8), 1965–1975 (2015). https://doi.org/10.1016/j.asr.2014.10.026

    Article  ADS  Google Scholar 

  • Karia, S.P., Patel, N.C., Pathak, K.N.: On the performance of IRI-2016 to predict the North-South asymmetry of the equatorial ionization anomaly around 73°E longitude. Adv. Space Res. 63(6), 1937–1948 (2019). https://doi.org/10.1016/j.asr.2018.09.033

    Article  ADS  Google Scholar 

  • Klobuchar, J.: Design and characteristics of the GPS ionospheric time-delay algorithm for single-frequency users. In: Proceedings of the IEEE Position Location and Navigation Symposium, Las Vegas, November 4–7 (1986)

    Google Scholar 

  • Kumar, S., Singh, A.K., Lee, J.: Equatorial Ionospheric Anomaly (EIA) and comparison with IRI model during descending phase of solar activity (2005–2009). Adv. Space Res. 53(5), 724–733 (2014). https://doi.org/10.1016/j.asr.2013.12.019

    Article  ADS  Google Scholar 

  • Kumar, S., Tan, E.L., Murti, D.S.: Impacts of solar activity on performance of the IRI-2012 model predictions from low to mid latitudes. Earth Planets Space 67, 42 (2015). https://doi.org/10.1186/s40623-015-0205-3

    Article  ADS  Google Scholar 

  • Maruyama, T.: Solar proxies pertaining to empirical ionospheric total electron content models. J. Geophys. Res. Space Phys. 115, A04306 (2010)

    Article  ADS  Google Scholar 

  • Maruyama, T.: Modified solar flux index for upper atmospheric applications. J. Geophys. Res. Space Phys. 116, A08303 (2011)

    Article  ADS  Google Scholar 

  • Nigussie, M., Radicella, S.M., Damtie, B., Nava, B., Yizengaw, E., Groves, K.: Validation of the NeQuick2 and IRI-2007 models in East African equatorial region. J. Atmos. Sol.-Terr. Phys. 102, 26–33 (2013). https://doi.org/10.1016/j.jastp.2013.04.016

    Article  ADS  Google Scholar 

  • Okoh, D., McKinnell, L.A., Cilliers, P., Okere, B., Okonkwo, C., Rabiu, A.B.: IRI-VTEC versus GPS-VTEC for Nigerian SCINDA GPS stations. Adv. Space Res. 55, 1941–1947 (2014). https://doi.org/10.1016/j.asr.2014.06.037

    Article  ADS  Google Scholar 

  • Opperman, B.D.L., Cilliers, P.J., Mckinnell, L.A., Haggard, R.: Development of a regional GPS-based ionospheric TEC model for South Africa. Adv. Space Res. 39(5), 808–815 (2007). https://doi.org/10.1016/j.asr.2007.02.026. Source: OAI

    Article  ADS  Google Scholar 

  • Panda, S.K., Gedam, S.S., Jin, S.: Ionospheric TEC variations at low Latitude Indian Region, Chapter 8, Satellite Positioning - Methods, Models and Applications (2015a). https://doi.org/10.5772/59988

  • Panda, S.K., Gedam, S.S., Rajaram, G.: Study of ionospheric TEC from GPS observations and comparisons with IRI and SPIM model predictions in the low latitude anomaly Indian sub continental region. Adv. Space Res. 55, 1948–1964 (2015b). https://doi.org/10.1016/j.asr.2014.09.004

    Article  ADS  Google Scholar 

  • Patari, A., De, B.K., Guha, A., Paul, B.: Conjugate hemispheric response of Earth’s ionosphere due to geomagnetic storms occurred during two equinox periods. J. Phys. Conf. Ser. 1330, 012004 (2019)

    Article  Google Scholar 

  • Patel, N.C., Karia, S.P., Pathak, K.N.: Comparison of GPS-derived TEC with IRI-2012 and IRI-2007 TEC predictions at Surat, a location around the EIA crest in the Indian sector, during the ascending phase of solar cycle 24. Adv. Space Res. 60(2), 228–237 (2017a). https://doi.org/10.1016/j.asr.2016.11.026

    Article  ADS  Google Scholar 

  • Patel, N.C., Karia, S.P., Pathak, K.N.: GPS-TEC variation during low to high solar activity period (2010-2014) under the northern crest of Indian equatorial ionization anomaly region. Positioning 8, 13–35 (2017b). https://doi.org/10.4236/pos.2017.82002

    Article  Google Scholar 

  • Paul, B., De, B.K., Guha, A.: Latitudinal variation of F-region ionospheric response during three strongest geomagnetic storms of 2015. Acta Geod. Geophys. 53, 579–606 (2018)

    Article  Google Scholar 

  • Paul, B., De, B.K., Guha, A.: Comments on the percentage of occurrence methodology used in “a study of L band scintillations during the initial phase of rising solar activity at an Indian low latitude station” by H J Tanna, S P Karia and K N Pathak. Adv. Space Res. 63, 1227–1233 (2019a)

    Article  ADS  Google Scholar 

  • Paul, B., Patari, A., De, B.K., Guha, A.: Response of the Earth’s equatorial ionosphere during the severe G4-class geomagnetic storm of 8th September 2017. J. Phys. Conf. Ser. 1330, 012005 (2019b)

    Article  Google Scholar 

  • Paul, B., De, B.K., Saha, K., Guha, A.: A comparative study between two percentages of occurrence methodologies for computing ionospheric scintillation statistics. Adv. Space Res. 66, 571–590 (2020a). https://doi.org/10.1016/j.asr.2020.04.024

    Article  ADS  Google Scholar 

  • Paul, B., Gordiyenko, G., Galav, P.: Study of the low and mid-latitude ionospheric response to the geomagnetic storm of 20th December 2015. Astrophys. Space Sci. 365, 174 (2020b). https://doi.org/10.1007/s10509-020-03884-5

    Article  ADS  Google Scholar 

  • Prasad, S.N.V.S., Rama Rao, P.V.S., Prasad, D.S.V.V.D., Venkatesh, K., Niranjan, K.: On the variabilities of the total electron content (TEC) over the Indian low latitude sector. Adv. Space Res. 49, 898–913 (2012). https://doi.org/10.1016/j.asr.2011.12.020

    Article  ADS  Google Scholar 

  • Rama Rao, P.V.S., Ramana Rao, B.V., Nru, D., Subrahmanyeaswara Rao, B.V.P., Srirama Rao, M.: Total electron measurement at Waltair using ETS II Geo-Stationary Satellite. In: Mitra, N.P. (eds.) Proceedings of a Symposium of the Twenty Second Planetary Meeting of COSPAR, May 1979, Low Latitude Aeronomical Process. NPL, New Delhi (1980)

    Google Scholar 

  • Rathore, V.S., Kumar, S., Singh, A.K.: A statistical comparison of IRI TEC prediction with GPS TEC measurement over Varanasi, India. J. Atmos. Terr. Phys. 124, 1–9 (2015). https://doi.org/10.1016/j.jastp.2015.01.006

    Article  ADS  Google Scholar 

  • Rawer, K., Bilitza, D., Ramakrishnan, S.: Goals and status of the international reference ionosphere. Rev. Geophys. Space Phys. 16, 177–181 (1978)

    Article  ADS  Google Scholar 

  • Rios, V.H., Medina, C.F., Alvarez, P.: Comparisons between IRI predictions and digisonde measurements at Tucuman. J. Atmos. Sol.-Terr. Phys. 69, 569–577 (2007)

    Article  ADS  Google Scholar 

  • Sastri, J., Hanumath: Equatorial anomaly in F-region - a review. Indian J. Radio Space Phys. 19, 225–240 (1990)

    ADS  Google Scholar 

  • Sharma, S.K., Ansari, K., Panda, S.K.: Analysis of ionospheric TEC variation over Manama, Bahrain, and comparison with IRI-2012 and IRI-2016 models. Arab. J. Sci. Eng. 43, 3823–3830 (2018). https://doi.org/10.1007/s13369-018-3128-z

    Article  Google Scholar 

  • Tariku, Y.A.: Comparison of GPS-TEC with IRI-2012 TEC over African equatorial and low latitude regions during the period of 2012–2013. Adv. Space Res. 56, 1677–1685 (2015). https://doi.org/10.1016/j.asr.2015.07.012

    Article  ADS  Google Scholar 

  • Titheridge, J.E.: The slab thickness of the mid-latitude ionosphere. Planet. Space Sci. 21, 1775–1793 (1973). https://doi.org/10.1016/0032-0633(73)90168-2

    Article  ADS  Google Scholar 

  • Tsai, H., Liu, J., Tsai, W., Liu, C.: Seasonal variations of the ionospheric total electron content in Asia equatorial anomaly regions. J. Geophys. Res. 106(A12), 30363–30369 (2001)

    Article  ADS  Google Scholar 

  • Van Dierendonck, A.J., Hua, Q.: Measuring ionospheric scintillation effects from GPS signals. In: Proceedings of ION 57th Annual Meeting, June 11–13, pp. 391–396. Institute of Navigation, Albuquerque (2001)

    Google Scholar 

  • Venkatesh, K., Rama Rao, P.V.S., Saranya, P.L., Prasad, D.S.V.V.D., Niranjan, K.: Vertical electron density and topside effective scale height (HT) variations over the Indian equatorial and low latitude stations. Ann. Geophys. 29, 1861–1872 (2011). https://doi.org/10.5194/angeo-29-1861-2011

    Article  ADS  Google Scholar 

  • Wu, C.C., Fry, C.D., Liou, K., Tseng, C.L.: Annual TEC variation in the equatorial anomaly region during the solar minimum: September 1996–August 1997. J. Atmos. Terr. Phys. 66, 199207 (2004)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Department of Physics, Tripura University for providing infrastructure to carry out the research. The authors are thankful to NASA for providing open access of the IRI-2016 and IRI-2012 model data (https://ccmc.gsfc.nasa.gov/modelweb/models/iri2016_vitmo.php and https://ccmc.gsfc.nasa.gov/modelweb/models/iri2012_vitmo.php), Sunspot number or SSN data (omniweb.gsfc.nasa.gov/form/dx1.html) and to NOAA for the 10.7 cm solar radio flux or F10.7 data (www.ngdc.noaa.gov/stp/space-weather/solar-data). The authors are thankful to Solar and Heliospheric Observatory (SOHO) for solar EUV flux data (dornsifecms.usc.edu/space-sciences-center/download-sem-data/). The authors are also thankful to World Data Center for Geomagnetism, Kyoto (wdc.kugi.kyoto-u.ac.jp/dstdir/) for providing international quiet and disturbed day’s data and to Global UltraViolet Imager onboard TIMED/GUVI satellites (guvitimed.jhuapl.edu/guvi-galleryl3on2) for global [O/N2] maps. The authors are grateful to DST FIST, Govt. of India for funding the research through the DST FIST fund (Ref. No SR/FST/PSI-191/2014). The authors are also grateful to UGC, Govt. of India for financial support to carry out this research through the financial assistance under the UGC – SAP program 2016 (Ref. No. F.530/23/DRS-I/2018 (SAP-I)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Guha.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patari, A., Paul, B. & Guha, A. Statistics of GPS TEC at the northern EIA crest region of the Indian subcontinent during the solar cycle 24 (2013-2018): comparison with IRI-2016 and IRI-2012 models. Astrophys Space Sci 366, 46 (2021). https://doi.org/10.1007/s10509-021-03950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-021-03950-6

Keywords

Navigation