Skip to main content

Advertisement

Log in

Bee-inspired metaheuristics for global optimization: a performance comparison

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Metaheuristics are widely applied to solve optimization problems. Numerous metaheuristic algorithms inspired by natural processes have been introduced in the past years. Studying and comparing the convergence of metaheuristics is helpful in future algorithmic development and applications. This study focuses on bee-inspired metaheuristics and identifies seven basic or root algorithms applied to solve continuous optimization problems. They are the bee system, mating bee optimization (MBO), bee colony optimization, bee evolution for genetic algorithms (BEGA), bee algorithm, artificial bee colony (ABC), and bee swarm optimization. The algorithms’ performances are evaluated with several benchmark problems. This study’s results rank the cited algorithms according to their convergence efficiency. The strengths and shortcomings of each algorithm are discussed. The ABC, BEGA, and MBO are the most efficient algorithms. This study’s results show the convergence rate among different algorithms varies, and evaluates the causes of such variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not relevant.

Code availability

The codes are available at https://github.com/rmsolgi/bee-inspired-metaheuristics.

Notes

  1. Fitness function refers to a penalized objective function, that is, the objective function with constraints added to it as penalty.

  2. In this manuscript selections always are done with replacement.

  3. This work applies uniform crossover in all algorithms in which the crossover function is used. The number and place of crossover points are random and uniformly distributed (Bozorg-Haddad et al. 2017a, b).

References

  • Abbass HA (2001) MBO: marriage in honey bees optimization a haplometrosis polygynous swarming approach. In: Proceedings of the 2001 congress on evolutionary computation (IEEE Cat. No.01TH8546), 27–30 May, Seoul, South Korea

  • Abbass H, Teo J (2003) A true annealing approach to the marriage in honey-bees optimization algorithm. Int J Comput Intell Appl 3(2):199–211

    Article  Google Scholar 

  • Abualigah LMQ (2019) Feature selection and enhanced krill herd algorithm for text document clustering. Studies in computational intelligence. Springer, Berlin

    Book  Google Scholar 

  • Abualigah L (2020) Multi-verse optimizer algorithm: a comprehensive survey of its results, variants, and applications. Neural Comput Appl 32:12381–12401

    Article  Google Scholar 

  • Abualigah L, Diabat A (2020) A novel hybrid antlion optimization algorithm for multi-objective task scheduling problems in cloud computing environments. Clust Comput. https://doi.org/10.1007/s10586-020-03075-5

    Article  Google Scholar 

  • Abualigah LMQ, Hanandeh ES (2015) Applying genetic algorithms to information retrieval using vector space model. Int J Comput Sci Eng Appl 5(1):19

    Google Scholar 

  • Abualigah LM, Khader AT, Hanandeh ES (2017) A new feature selection method to improve the document clustering using particle swarm optimization algorithm. J Comput Sci 25:456–466

    Article  Google Scholar 

  • Abualigah LM, Khader AT, abd Hanandeh ES (2018a) Hybrid clustering analysis using improved krill herd algorithm. Appl Intell 48:4047–4071

    Article  Google Scholar 

  • Abualigah LM, Khader AT, Hanandeh ES (2018b) A combination of objective functions and hybrid krill herd algorithm for text document clustering analysis. Eng Appl Artif Intell 73:111–125

    Article  Google Scholar 

  • Abualigah L, Diabat A, Geem ZW (2020a) A comprehensive survey of the harmony search algorithm in clustering applications. Appl Sci 10(11):3827

    Article  Google Scholar 

  • Abualigah L, Shehab M, Alshinwan M, Mirjalili S, Elaziz MA (2020b) Ant lion optimizer: a comprehensive survey of its variants and applications. Arch Comput Methods Eng. https://doi.org/10.1007/s11831-020-09420-6

    Article  Google Scholar 

  • Akbari R, Mohammadi A, Ziarati K (2010) A novel bee swarm optimization algorithm for numerical function optimization. Commun Nonlinear Sci Number Simulat 15:3142–3155

    Article  MathSciNet  MATH  Google Scholar 

  • Ashghari S, Jafari Navimipour N (2019a) Cloud service composition using an inverted ant colony optimization algorithm. Int J Bio-Inspir Comput 13(4):257

    Article  Google Scholar 

  • Ashghari S, Jafari Navimipour N (2019b) Resource discovery in the peer to peer networks using an inverted ant colony optimization algorithm. Peer Peer Netw Appl 12:129–142

    Article  Google Scholar 

  • Aslan S (2019) A transition control mechanism for artificial bee colony (ABC) algorithm. Comput Intell Neurosci 2019:5012313

    Article  Google Scholar 

  • Aslan S, Badem H, Karaboga D (2019) Improved quick artificial bee colony (iqABC) algorithm for global optimization. Soft Comput 23:13161–13182

    Article  Google Scholar 

  • Banharnsakun A, Achalakul T, Sirinaovakul B (2011) The best-so-far selection in artificial bee colony algorithm. Appl Soft Comput 11:2888–2901

    Article  Google Scholar 

  • Barker JSF (1958) Simulation of genetic systems by automatic digital computers. Aust J Biol Sci 11(4):603–612

    Article  Google Scholar 

  • Box GEP (1957) Evolutionary operation: a method for increasing industrial productivity. Appl Stat 6(2):81–101

    Article  Google Scholar 

  • Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge Uni. Press, Cambridge

    Book  MATH  Google Scholar 

  • Bozorg-Haddad O, Afshar A, Marino MA (2006) Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization. Water Resour Manag 20:661–680

    Article  Google Scholar 

  • Bozorg-Haddad O, Hoseini-Ghafari S, Solgi M, Loaiciga HA (2016a) Intermittent urban water supply with protection of consumer’s welfare. J Pipeline Syst Eng Pract 7(3):04016002

    Article  Google Scholar 

  • Bozorg-Haddad O, Ghajarnia N, Solgi M, Loaiciga HA (2016b) A DSS based honey bee mating optimization (HBMO) algorithm for single- and multi-objective design of water distribution networks. In: Metaheuristic and optimization in civil engineering. Springer, Cham, pp 199–233

  • Bozorg-Haddad O, Ghajarnia N, Solgi M, Loaiciga HA, Marino MA (2017a) Multi-objective design of water distribution systems based on the fuzzy reliability index. J Water Supply Res Technol 66(1):36–48

    Article  Google Scholar 

  • Bozorg-Haddad O, Solgi M, Loaiciga HA (2017b) Meta-heuristic and evolutionary algorithms for engineering optimization. Wiley, New York

    Book  Google Scholar 

  • Bremermann HJ (1962) Optimization through evolution and recombination. In: Yovits MC, Jacobi GT, Goldstein GD (eds) Self-organized systems. Spartan Books, Washington

    Google Scholar 

  • Celik Y, Ulker E (2013) An improved marriage in honey bees optimization algorithm for single objective constrained optimization. Sci World J 2013:370172

    Article  Google Scholar 

  • Chen X, Tianfield H, Li K (2019) Self-adaptive differential bee colony algorithm for global optimization problem. Swarm Evol Comput 45:70–91

    Article  Google Scholar 

  • Comellas F, Mrtinez-Navaro J (2009) Bumblebees: a multiagent combinatorial optimization algorithm inspired by social insect behavior. In: Proceedings of the first ACM/SIGEVO summit on genetic evolutionary computation, 12–14 June, Shanghai, China

  • Cui L, Li G, Luo Y, Chen F, Ming Z, Lu N, Lu J (2018) An enhanced artificial bee colony algorithm with dual-population framework. Swarm Evol Comput 43:184–206

    Article  Google Scholar 

  • Darwish A, Hassanien AE, Das S (2019) A survey of swarm and evolutionary computing approaches for deep learning. Artif Intell Rev 53:1767–1812

    Article  Google Scholar 

  • De Jong K, Fogel DB, Schwefel HP (1997) A history of evolutionary computation. In: Back T, Fogel DB, Michalewicz Z (eds) Handbook of evolutionary computation. IOP publishing Ltd and Oxford University Press, Oxford

    Google Scholar 

  • Dereli S, Koker R (2019) A metaheuristic proposal for inverse kinematics solution of 7-DOF serial robotic manipulator: quantum behaved particle swarm algorithm. Artif Intell Rev 53:949–964

    Article  Google Scholar 

  • Dorigo M, Maniezzo V, Colorni A (1991) Positive feedback as a search strategy. Dipartimento di Elettronica, Politecnico di Milano, Milano, Technical Report No 91-016

  • Dorigo M, Maniezzo V, Colorni A (1996) The ant system: Optimization by a colony of cooperating ants. IEEE Trans Syst Man Cybern Part B 26(1):29–42

    Article  Google Scholar 

  • Eusuff MM, Lansey KE (2003) Application of the shuffled frog leaping algorithm for the optimization of a general large-scale water supply system. Water Resour Manag 23(4):797–823

    Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

    MATH  Google Scholar 

  • Friedberg RM (1958) A learning machine: part I. IBM J Res Dev 2(1):2–13

    Article  Google Scholar 

  • Gao WF, Liu SY, Huang LL (2013a) A novel artificial bee colony algorithm based on modified search equation and orthogonal learning. IEEE Trans Cybern 43(3):1011

    Article  Google Scholar 

  • Gao W, Liu S, Huang L (2013b) A global best artificial bee colony algorithm for global optimization. J Comput Appl Math 236:2741–2753

    Article  MathSciNet  MATH  Google Scholar 

  • Gao WF, Huang LL, Liu SY, Dai C (2015) Artificial bee colony algorithm based on information learning. IEEE Trans Cybern 45(12):2827

    Article  Google Scholar 

  • Glover F (1986) Future paths for integer programming and links to artificial intelligence. Comput Oper Res 13:533–549

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta S, Deep K (2019) Hybrid sin cosine artificial bee colony algorithm for global optimization and image segmentation. Neural Comput Appl 32:9521–9543

    Article  Google Scholar 

  • Hajimirzaei B, Jafari Navimipour N (2019) Intrusion detection for cloud computing using neural networks and artificial bee colony optimization algorithm. ICT Express 5(1):56

    Article  Google Scholar 

  • Hillier FS, Liberman GJ (1995) Introduction to operations research, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Holland JH (1967) Nonlinear environments permitting efficient adaptation. Computer and information sciences II. Academic Press Inc, New York

    MATH  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical problems. J ACM 8(2):212–229

    Article  MATH  Google Scholar 

  • Hussein WA, Sahran S, Sheikh Abdullah SNH (2016) The variants of the bees algorithm (BA): s survey. Artif Intell Rev 47(1):67

    Article  Google Scholar 

  • Jong GJ, Horng GJ (2017) A novel queen honey bee migration (QHBM) algorithm for sink repositioning in wireless sensor network. Wirel Pers Commun 95:3209–3232

    Article  Google Scholar 

  • Jung SH (2003) Queen-bee evolution for genetic algorithms. Electron Lett 39(6):575

    Article  Google Scholar 

  • Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Erciyes University, Technical Report-TR06, Kayseri, Turkey

  • Karaboga D, Akay B (2009) A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 31:61–85

    Article  Google Scholar 

  • Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8:687–698

    Article  Google Scholar 

  • Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2012) A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 42:21–57

    Article  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceeding of international conference on neural networks, Perth, Australia, November 27 to December 1, Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ, pp 1942–1948

  • Khan L, Ullah I, Saeed T, Lo KL (2010) Virtual bees algorithm based design of damping control system for TCSC. Aust J Basic Appl Sci 4(1):1–18

    Google Scholar 

  • Kirkpatrick S, Gelatte CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4589):671–680

    Article  MathSciNet  MATH  Google Scholar 

  • Koc (2010) The bees algorithm theory, improvements and applications. PhD thesis, Cardiff University, Cardiff, UK

  • Kruger TJ, Davidovic T, Teodorovic D, Selmic M (2016) The bee colony optimization algorithm and its convergence. Int J Bio Inspir Comput 8(5):340

    Article  Google Scholar 

  • Lucic P (2002) Modeling transportation problems using concepts of swarm intelligence and soft computing. PhD thesis, Virginia Polytechnic Institute and State University, Virginia, USA

  • Mernik M, Liu SH, Karaboga D, Crepinsek M (2015) On clarifying misconceptions when comparing variants of the artificial bee colony algorithm by offering a new implementation. Inf Sci 291:115–127

    Article  MathSciNet  MATH  Google Scholar 

  • Ming H, Baohui J, Xu L (2010) An improved bee evolutionary genetic algorithm. In: IEEE international conference on intelligent computation and intelligent systems, 29–31 October, Xiamen, China

  • Molga M, Smutnicki C (2005) Test functions for optimization needs. http://www.zsd.ict.pwr.wroc.pl/files/docs/functions.pdf. Accessed Nov 2020

  • Moradipari A, Alizadeh M (2018) Pricing differentiated services in an electric vehicle public charging station network. In: 57th IEEE conference on decision and control (CDC), December 17–19, FL, USA

  • Nasrinpour HR, Bavani MA, Teshnehlab M (2017) Grouped bees algorithm: a grouped version of the bees algorithm. Computers 6(1):5

    Article  Google Scholar 

  • Nikolic M, Teodorovic D (2013) Empirical study of the bee colony optimization (BCO) algorithm. Expert Syst Appl 40:4609–4620

    Article  Google Scholar 

  • Panahi V, Jafari Navimipour N (2019) Join query optimization in the distributed database system using an artificial bee colony algorithm and genetic operators. Concurr Comput Pract Exp 31(17):e5218

    Article  Google Scholar 

  • Pham DT, Darwish AH (2008) Fuzzy selection of local search sites in the bees algorithm. In: Pham DT, Eldukhri EE, Soroka AJ (eds) Innovative production machines and systems. Cardiff University, Cardiff

    Google Scholar 

  • Pham DT, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) Bee algorithm a novel approach to function optimization. Technical Note: MEC 0501, Cardiff University, Cardiff, UK

  • Pham QT, Pham DT, Castellani M (2011) A modified bees algorithm and a statistics-based method for tuning its parameters. Proc Inst Mech Eng Part I J Syst Control Eng 226:287–301

    Google Scholar 

  • Poolsamran P, Thammano A (2011) A modified marriage in honey-bee optimization for function optimization problems. Procedia Comput Sci 6:335–342

    Article  Google Scholar 

  • Qin Q, Cheng S, Zhang Q, Li L, Shi Y (2015) Artificial bee colony algorithm with time varying strategy. In: Discrete Dynamics in Nature and Society, 2015, 674595

  • Quijano N, Passino KM (2010) Honey bee social foraging algorithms for resource allocation: theory and Application. Eng Appl Artif Intell 23(6):845

    Article  Google Scholar 

  • Rabe M, Deininger M (2012) State of art and research demands for simulation modeling of green supply chains. Int J Autom Technol 6(3):296

    Article  Google Scholar 

  • Rechenberg I (1965) Cybernetic solution path of an experimental problem. Royal Aircraft Establishment Library Translation 1122

  • Rudolph G (2012) Stochastic convergence. In: Rozenberg G, Back T, Kok JN (eds) Handbook of natural computing. Springer, Berlin, pp 847–869

    Chapter  Google Scholar 

  • Sato T, Hagiwara M (1997) Bee system: finding solution by a concentrated search. In: IEEE international conference on systems, man, and cybernetics. computational cybernetics and simulation, 12–15 October, Orlando, FL, USA

  • Solgi M, Bozorg-Haddad O, Seifollahi Aghmiuni S, Ghasemi-Abiazani P, Loaiciga HA (2016) Optimal operation of water distribution networks under water shortage considering water quality. J Pipeline Syst Eng Pract 7(3):04016005

    Article  Google Scholar 

  • Solgi M, Bozorg-Haddad O, Loaiciga HA (2017) The enhanced honey-bee mating optimization algorithm for water resources optimization. Water Resour Manag 31:885–901

    Article  Google Scholar 

  • Sorensen K, Sevaux M, Glover F (2017) A history of metaheuristics. In: Marti R, Pardalos P, Resende M (eds) Handbook of heuristics. Springer, Berlin

    Google Scholar 

  • Starke S, Hendrich N, Zhang J (2019) Memetic evolution for genetic full-body inverse kinematics in robotics and animation. IEEE Trans Evol Comput 23(3):406

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim 11(4):341–359

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai P, Chu SC, Pan JS (2009) Enhanced artificial bee colony optimization. Int J Innov Comput Inf Control 5(12):5081

    Google Scholar 

  • Wang B, Wang L (2012) A novel artificial bee colony algorithm for numerical function optimization. In: Fourth international conference on computational and information sciences, 17–19 August, Chongqing, China

  • Wedde HF, Farooq M, Zhang Y (2004) BeeHive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: Dorigo M, Birattari M, Blum C, Gambardella LM, Mondada F, Stutzle Th (eds) Ant colony optimization and swarm intelligence. Springer, Berlin

    Google Scholar 

  • Xiang W, An M (2013) An efficient and robust artificial bee colony algorithm for numerical optimization. Comput Oper Res 40:1256–1265

    Article  MathSciNet  MATH  Google Scholar 

  • Xu C, Zhang Q, Li J, Zhao X (2008) A bee swarm genetic algorithm for the optimization of DNA encoding. In: The 3rd international conference on innovative computing information and control (ICICIC’08), 18–20 June, Dalian, China

  • Xu B, Zhang M, Browne WM, Yao X (2016) A survey on evolutionary computation approached to feature selection. IEEE Trans Evol Comput 20(4)

  • Yang XS (2011) Metaheuristic optimization: algorithm analysis and open problems. In: Pardalos PM, Rebennack S (eds) SEA 2011, LNCS 6630. Springer, Berlin

    Google Scholar 

  • Yang C, Chen J, Tu X (2007) Algorithm of fast marriage in honey bees optimization and convergence analysis. In: Proceedings of IEEE international conference on automation and logistics, August 18–21, Jinan, China

  • Yuce B, Packianather MS, Mastrocinque E, Pham DT, Lambiase A (2013) Honey bees inspired optimization method: the bees algorithm. Insects 4:646–662

    Article  Google Scholar 

  • Zanbouri K, Jafari Navimipour N (2019) A cloud service composition method using a trust-based clustering algorithm and honeybee mating optimization algorithm. Int J Commun Syst 33:e4259

    Article  Google Scholar 

  • Zhu G, Kwong S (2010) Gbest-guided artificial bee colony algorithm for numerical function optimization. Appl Math Comput 217:3166–3172

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Not relevant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Solgi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solgi, R., Loáiciga, H.A. Bee-inspired metaheuristics for global optimization: a performance comparison. Artif Intell Rev 54, 4967–4996 (2021). https://doi.org/10.1007/s10462-021-10015-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-021-10015-1

Keywords

Navigation