Skip to main content
Log in

A Bakry–Émery Almost Splitting Result With Applications to the Topology of Black Holes

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The almost splitting theorem of Cheeger-Colding is established in the setting of almost nonnegative generalized m-Bakry–Émery Ricci curvature, in which m is positive and the associated vector field is not necessarily required to be the gradient of a function. In this context it is shown that with a diameter upper bound and volume lower bound, as well as control on the Bakry–Émery vector field, the fundamental group of such manifolds is almost abelian. Furthermore, extensions of well-known results concerning Ricci curvature lower bounds are given for generalized m-Bakry–Émery Ricci curvature. These include: the first Betti number bound of Gromov and Gallot, Anderson’s finiteness of fundamental group isomorphism types, volume comparison, the Abresch–Gromoll inequality, and a Cheng–Yau gradient estimate. Finally, this analysis is applied to stationary vacuum black holes in higher dimensions to find that low temperature horizons must have limited topology, similar to the restrictions exhibited by (extreme) horizons of zero temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here the convention for positive and negative parts of a function f is such that \(f=f_+ + f_-\) and \(|f|=f_+ - f_-\).

References

  1. Abresch, U., Cheeger, J.: On complete manifolds with nonnegative Ricci curvature. J. Am. Math. Soc. 3, 355–374 (1990)

    Article  MathSciNet  Google Scholar 

  2. Anderson, M.: Short geodesics and gravitational instantons. J. Differ. Geom. 31(1), 265–275 (1990)

    Article  MathSciNet  Google Scholar 

  3. Andersson, L., Mars, M., Simon, W.: Stability of marginally outer trapped surfaces and existence of marginally outer trapped tubes. Adv. Theor. Math. Phys. 12(4), 853–888 (2008)

    Article  MathSciNet  Google Scholar 

  4. Armas, J., Harmack, T., Obers, N.: Extremal black hole horizons. J. High Energy Phys. 2018(3), 1–33 (2018)

    Article  MathSciNet  Google Scholar 

  5. Armas, J., Obers, N.: Blackfolds in (anti)-de Sitter backgrounds. Phys. Rev. D 83, 084039 (2011)

    Article  ADS  Google Scholar 

  6. Caldarelli, M., Emparan, R., Rodriguez, M.: Black rings in (anti)-de Sitter space. J. High Energy Phys. 2008(11), 011 (2008)

    Article  MathSciNet  Google Scholar 

  7. Cheeger, J.: Degeneration of Riemannian Metrics Under Ricci Curvature Bounds, Lezioni Fermiane (Fermi Lectures). Scuola Normale Superiore, Pisa (2001)

    MATH  Google Scholar 

  8. Cheeger, J., Colding, T.: Lower bounds on Ricci curvature and the almost rigidity of warped products. Ann. Math. 144, 189–237 (1996)

    Article  MathSciNet  Google Scholar 

  9. Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differ. Geom. 6(1), 119–128 (1971)

    MathSciNet  MATH  Google Scholar 

  10. Cheng, S.-Y., Yau, S.-T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28, 333–354 (1975)

    Article  MathSciNet  Google Scholar 

  11. Chruściel, P. T., Hörzinger, M.: Personal Communication (2019)

  12. Chruściel, P.T., Wald, R.: On the topology of stationary black holes. Class. Quantum Grav. 11, L147–L152 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. do Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (2012)

    MATH  Google Scholar 

  14. Emparan, R., Reall, H.: A rotating black ring in five dimensions. Phys. Rev. Lett. 88, 101101 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  15. Evans, L.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence, RI (1998)

    Google Scholar 

  16. Friedman, J., Schleich, K., Witt, D.: Topological censorship. Phys. Rev. Lett. 71, 1486–1489 ; erratum-ibid. 75 (1995), 1872 (1993)

  17. Gallot, S.: Inégalités isopérimétriques, courbure de Ricci et invariants géométriques, I. C. R. Acad. Sci. Sér. I Math. 296, 333–336 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Galloway, G.J.: Rigidity of marginally trapped surfaces and the topology of black holes. Commun. Anal. Geom. 16, 217–229 (2008)

    Article  MathSciNet  Google Scholar 

  19. Galloway, G.J., Schleich, K., Witt, D., Woolgar, E.: Topological censorship and higher genus horizons. Phys. Rev. D 60, 104039 (1999)

  20. Galloway, G.J., Schoen, R.: A generalization of Hawking’s black hole topology theorem to higher dimensions. Commun. Math. Phys. 266, 571–576 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

    Article  MathSciNet  Google Scholar 

  22. Gromov, M.: Metric Structures for Riemannian and Non-Riemannian Spaces. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  23. Hawking, S.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  24. Hawking, S., Ellis, G.: Large Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  25. Hollands, S., Ishibashi, A.: On the ‘stationary implies axisymmetric’ theorem for extremal black holes in higher dimensions. Commun. Math. Phys. 291, 403–441 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hollands, S., Ishibashi, A.: Black hole uniqueness theorems in higher dimensional spacetimes. Class. Quantum Grav. 29(16), 163001 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hollands, S., Ishibashi, A., Wald, R.: A higher dimensional stationary rotating black hole must be axisymmetric. Commun. Math. Phys. 271(3), 699–722 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  28. Itoh, J.-I., Tanaka, M.: The dimension of a cut locus on a smooth Riemannian manifold. Tohoku Math. J. 50(4), 571–575 (1998)

    Article  MathSciNet  Google Scholar 

  29. Jaramillo, M.: Fundamental groups of spaces with Bakry–Émery Ricci tensor bounded below. J. Geom. Anal. 25, 1828–1858 (2013)

    Article  Google Scholar 

  30. Khuri, M., Woolgar, E.: Nonexistence of extremal de Sitter black rings. Class. Quantum Grav. 34, 22LT01 (2017)

    Article  MathSciNet  Google Scholar 

  31. Khuri, M., Woolgar, E., Wylie, W.: New restrictions on the topology of extreme black holes. Lett. Math. Phys. 109, 661–673 (2019)

  32. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  33. Moncrief, V., Isenberg, J.: Symmetries of higher dimensional black holes. Class. Quantum Grav. 25(19), 195015 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  34. Petersen, P.: Riemannian Geometry, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  35. Pfeffer, W.: The Divergence Theorem and Sets of Finite Perimeter. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  36. Pomeransky, A., Sen’kov, R.: Black ring with two angular momenta. Preprint, arXiv:hep-th/0612005

  37. Richard, T.: An Introduction to Ricci Curvature with a View Towards Limit Spaces. Grenoble Summer School, Grenoble (2016). (unpublished)

    Google Scholar 

  38. Wang, F., Zhu, X.: Structure of spaces with Bakry–Émery Ricci curvature bounded below. J. Reine. Angew. Math. (Crelle) 757, 1–50 (2019)

    Article  MathSciNet  Google Scholar 

  39. Warner, F.: Foundations of Differentiable Manifolds and Lie Groups, Graduate Texts in Mathematics, vol. 94. Springer-Verlag, New York (1983)

    Book  Google Scholar 

  40. Wei, G.: On the fundamental groups of manifolds with almost-nonnegative Ricci curvature. Proc. AMS 110(1), 197–199 (1990)

    Article  MathSciNet  Google Scholar 

  41. Wei, G., Wylie, W.: Comparison Geometry for the Bakry–Émery Ricci tensor. J. Differ. Geom. 83, 337–405 (2009)

    Article  Google Scholar 

  42. Yun, G.: A note of the fundamental groups of manifolds with almost nonnegative curvature. Proc. AMS 125, 1517–1522 (1997)

    Article  MathSciNet  Google Scholar 

  43. Zhang, Q., Zhu, M.: New volume comparison results and applications to degeneration of Riemannian metrics. Adv. Math. 352, 1096–1154 (2019)

    Article  MathSciNet  Google Scholar 

  44. Zhu, S.: The comparison geometry of Ricci curvature. In: Grove, K., Petersen, P. (eds.) Comparison geometry, vol. 30, pp. 221–262. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Christina Sormani for discussions that led to the genesis of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Woolgar.

Additional information

Communicated by P. Chrusciel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. J. Galloway acknowledges the support of NSF Grant DMS-1710808. M. A. Khuri acknowledges the support of NSF Grant DMS-1708798, and Simons Foundation Fellowship 681443. E. Woolgar acknowledges the support of a Discovery Grant RGPIN-2017-04896 from the Natural Sciences and Engineering Research Council.

A Cheng–Yau Gradient Estimate

A Cheng–Yau Gradient Estimate

Lemma A.1. Let (MgX) be a complete Riemannian manifold of dimension n with smooth vector field X. Let \(m,\mathcal {C}>0\), \(\delta \ge 0\), and \(0<r_1<r_2\), and assume that \(\mathrm {Ric}_X^m(g)\ge -(n-1)\delta g\) together with \(|X|\le \mathcal {C}\) on \(B_{r_2}(p)\). Suppose that \(u\in C^{\infty }(B_{r_2}(p))\) is positive and satisfies

$$\begin{aligned} \Delta _X u = a F(u), \end{aligned}$$
(A.1)

for some functions \(a\in C^{\infty }(B_{r_2}(p))\) and \(F\in C^{\infty }(\mathbb {R}_+)\). Then there exists a constant \(C_0\ge 1\) depending on \(n,m,\delta ,r_1,r_2,\mathcal {C}\) such that

$$\begin{aligned} {\text {sup}}_{B_{r_1}(p)}|\nabla \log u|^2 \!\le \! C_0 +{\text {sup}}_{B_{r_2}(p)}\!\left\{ \!8n\left[ \left( |a|+|\nabla a|\right) \frac{|F(u)|}{u}\!+\! |aF'(u)| \right] \!+\! 4\!\left( \!\mathcal {C}\!+\!\sqrt{\frac{|F(u)|}{u}}\right) ^2 \!\right\} . \end{aligned}$$
(A.2)

Proof

The proof involves a detailed but straightforward calculation that appears in [7, Chapter 7], which we modify to accommodate the vector field X. Using equation (A.1) a direct computation shows that for \(v:=\log u\) we obtain

$$\begin{aligned} \Delta _X v = -\left| \nabla v \right| ^2 +ae^{-v}F(e^v)=:-\left| \nabla v \right| ^2 +aG(v). \end{aligned}$$
(A.3)

Next, define \(Q:=\phi |\nabla v |^2\) where the nonnegative cut-off function \(\phi :B_{r_2}(p)\rightarrow [0,1]\) is chosen such that \(\phi = 1\) on \(B_{r_1}(p)\), \(\phi =0\) in a neighborhood of \(\partial B_{r_2}(p)\), and \(\phi \le 1\) on \(B_{r_2}(p)\). In what follows, calculations will be evaluated at a point \(q\in B_{r_2}(p)\) where Q takes its maximum, so terms involving \(\nabla Q\) will be dropped or rather the identity \(0=|\nabla v|^2 \nabla \phi +\phi \nabla \left( |\nabla v|^2 \right) \) will be implemented.

First observe that

$$\begin{aligned} \Delta _X Q = \frac{Q}{\phi } \Delta _X \phi -\frac{2Q}{\phi ^2} |\nabla \phi |^2 +\phi \Delta _X \left( |\nabla v|^2 \right) \ . \end{aligned}$$
(A.4)

The last term in this formula may be replaced with help from the Bochner formula [31, Lemma 4]

$$\begin{aligned} \begin{aligned} \Delta _X \left( |\nabla v|^2 \right) =&\, 2|{\mathrm{Hess}}v|^2 +2\mathrm {Ric}_X^m (\nabla v, \nabla v) +2\nabla _{\nabla v}\Delta _X v +\frac{2}{m}\left( X(v)\right) ^2\\ \ge&\,\frac{2}{n}\left( \Delta v\right) ^2 -\frac{2(n-1)\delta }{\phi } Q+2\nabla _{\nabla v}\Delta _X v +\frac{2}{m}\left( X(v)\right) ^2\ , \end{aligned} \end{aligned}$$
(A.5)

where the Bakry–Émery Ricci curvature lower bound and the Cauchy–Schwarz inequality were used. Furthermore by (A.3)

$$\begin{aligned} \begin{aligned} \frac{2}{n}\phi \left( \Delta v\right) ^2=\,&\frac{2}{n}\phi ^{-1} \left( \phi \Delta _X v+\phi X(v)\right) ^2\\ =\,&\frac{2}{n}\left( \phi G(v) +\phi X(v)-Q\right) ^2, \end{aligned} \end{aligned}$$
(A.6)

and

$$\begin{aligned} 2\phi \nabla _{\nabla v}\Delta _X v =&2\phi \nabla _{\nabla v}\left( aG(v)-|\nabla v |^2 \right) \\ =&2\phi (\nabla v\cdot \nabla a)G(v)+2aG'(v)Q-2\phi \nabla v \cdot \nabla \left( |\nabla v |^2\right) \nonumber \\ =&2\phi (\nabla v\cdot \nabla a)G(v)+2aG'(v)Q+2|\nabla v |^2 \nabla v \cdot \nabla \phi \nonumber \\ =&2\phi (\nabla v\cdot \nabla a)G(v)+2aG'(v)Q+\frac{2}{\phi } Q \nabla v \cdot \nabla \phi \nonumber \\ \ge&-2|\nabla a||G(v)|\phi ^{1/2}Q^{1/2}+2aG'(v)Q-4n \frac{|\nabla \phi |^2}{\phi ^2}Q -\frac{1}{4n\phi }Q^2.\,\,\,\quad \nonumber \end{aligned}$$
(A.7)

Gathering the above expressions produces

$$\begin{aligned} \phi \Delta _X Q \ge&Q\Delta _X \phi -(2+4n) \frac{|\nabla \phi |^2}{\phi }Q -2|\nabla a||G(v)|\phi ^{3/2}Q^{1/2}+2a\phi G'(v)Q-\frac{1}{4n}Q^2 \nonumber \\&-2(n-1)\delta \phi Q +\frac{2}{m}\phi \left( X(v)\right) ^2 +\frac{2}{n}\left( \phi X(v) +\phi G(v) -Q \right) ^2 \end{aligned}$$
(A.8)

at q, where Q takes its maximum.

Now suppose that \(Q(q)\le 2\phi \left( G(v)+X(v) \right) (q)\), then the definitions of v, G, and Q yield

$$\begin{aligned} |\nabla \log u|^2\le 2 u^{-1}\left( F(u)+X(u)\right) \le 2u^{-1}|F(u)| +2\mathcal {C}|\nabla \log u |\quad \quad \text {at}\quad \quad q. \end{aligned}$$
(A.9)

It follows that

$$\begin{aligned} {\text {sup}}_{B_{r_2}(p)} Q\le 4\left( \mathcal {C}+{\text {sup}}_{B_{r_2}(p)} \sqrt{u^{-1}|F(u)|}\right) ^2. \end{aligned}$$
(A.10)

If on the other hand \(Q(q)\ge 2\phi \left( G(v)+X(v) \right) (q)\), then this may be manipulated into the form

$$\begin{aligned} \frac{2}{n}\left( \phi X(v) + \phi G(v) -Q\right) ^2 -\frac{1}{4n}Q^2 \ge \frac{1}{4n}Q^2 . \end{aligned}$$
(A.11)

Inserting this into (A.8) and using that \(\Delta _X Q\le 0\) at the maximum point q, gives rise to

$$\begin{aligned} \frac{1}{4n}Q \le -\Delta _X \phi +(2+4n) \frac{|\nabla \phi |^2}{\phi } +2|\nabla a||G(v)|\phi ^{3/2}Q^{-1/2} -2a\phi G'(v) +2(n-1)\delta \phi . \end{aligned}$$
(A.12)

We may assume that \(Q(q)> 1\), otherwise (A.2) is automatically valid since \(C_0 \ge 1\). It follows that

$$\begin{aligned} {\text {sup}}_{B_{r_2}(p)}Q\le C_0 +{\text {sup}}_{B_{r_2}(p)}8n\left[ (|a|+|\nabla a|)u^{-1}|F(u)|+|aF'(u)| \right] . \end{aligned}$$
(A.13)

In order to show that the constant \(C_0\) depends only on the quantities stated in the lemma, we choose the cut-off function \(\phi \) to be a non-increasing function of the distance \(\rho \) from p, so that as in Corollary 2.3 we have \(\Delta _X\phi \ge \bar{\Delta }_{n+m}\phi \). Note that a modification employing a barrier function produces the same result when q is a cut point (see [7, page 41]).

Finally observe that the sequence of elementary inequalities

$$\begin{aligned} {\text {sup}}_{B_{r_1}(p)}|\nabla \log u|^2={\text {sup}}_{B_{r_1}(p)}Q \le {\text {sup}}_{B_{r_2}(p)}Q, \end{aligned}$$
(A.14)

together with (A.10) and (A.13) gives the desired result. \(\quad \square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galloway, G.J., Khuri, M.A. & Woolgar, E. A Bakry–Émery Almost Splitting Result With Applications to the Topology of Black Holes. Commun. Math. Phys. 384, 2067–2101 (2021). https://doi.org/10.1007/s00220-021-04005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-021-04005-1

Navigation