Skip to main content
Log in

Experimental Study of Enhanced Boiling Heat Transfer with Suction

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

In this paper, the tested chip was directly immersed in subcooled (ΔTsub = 3 K) FC-72 for boiling heat transfer, and an experimental apparatus with suction tube was designed. A smooth silicon chip with the dimension of 10 × 10 × 0.5 mm3 (length × width × thickness) was used as a heater. The effects of inner diameter of suction tube (D = 2.2, 5.5 and 9.6 mm) and the distance from the suction tube inlet to the tested chip surface (H = 1, 3 and 5 mm) on boiling heat transfer performance were explored. For comparison, experiment without suction on a smooth surface was also conducted. The experimental results showed that the suction boiling has a significant heat transfer enhancement compared with the traditional pool boiling without suction. The suction tube with the diameter of 5.5 mm has the best boiling heat transfer performance, and then 9.6 mm followed by 2.2 mm under the same variables, and the suction distance of 1 mm shows the largest heat transfer enhancement. The heat transfer coefficient (HTC) increases with the decrease of the distance from the suction tube inlet to the tested heating surface. At D = 5.5 mm and H = 1 mm, the maximum critical heat flux (CHF) increased by 39.22% compared with pool boiling without suction, while the maximum CHF increased to 33.4 W·cm−2, and the maximum HTC increased by 79.77% compared with pool boiling without suction, while the maximum HTC increased to 1.093W·cm−2·K−1. The mechanism of the enhancement of the boiling heat transfer performance is attributed to that the liquid supplement is enhanced and the bubbles departure velocity is accelerated due to the local low pressure and shear lift force generated by the suction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Projected area of heated surface (m2)

b :

Width of chip (mm)

CHF:

Critical heat flux (W·m-2)

D :

Diameter of suction tube,(mm)

F :

Net force (N)

F x :

Force in x direction (N)

F sx :

Surface tension force in x direction (N)

F i :

Latent heat (J/kg)

F qs :

Quasi-steady drag force (N)

F dx :

Unsteady drag force in x direction (N)

F y :

Force in y direction (N)

F sy :

Surface tension force in y direction (N)

F dy :

Unsteady drag force in y direction (N)

F sl :

Shear lift force (N)

F b :

Buoyancy (N)

F cp :

Contact pressure force (N)

F h :

Hydrodynamic pressure force (N)

HTC/h :

Heat transfer coefficient (W·m-2·K-1))

H :

The distance from the suction tube inlet to the tested chip surface, (mm)

I :

Heating current (A)

L :

Length of chip (mm)

ONB:

Onset of nucleate boiling

q :

Heat flux (W·m-2)

T f :

Liquid temperature (K)

T sat :

Saturated temperature (K)

T w :

Surface temperature (K)

ΔT sa t :

Wall superheat (K)

ΔT sub :

Subcooling temperature (K)

U :

Heating voltage (V)

References

  • Cao, Y., Nguyen, P.T., Jermsittiparsert, K., Belmabrouk, H., Alharbi, S.O., Khorasani, M.S.: Thermal characteristics of air-water two-phase flow in a vertical annularly corrugated tube. J. Energy Storage. 31, 101605 (2020)

    Article  Google Scholar 

  • Cao, Z., Liu, B., Preger, C., Wu, Z., Zhang, Y.H., Wang, X.L., Messing, M.E., Deppert, K., Wei, J.J., Sundén, B.: Pool boiling heat transfer of FC-72 on pin-fin silicon surfaces with nanoparticle deposition. Int. J. Heat Mass Transf. 126, 1019–1033 (2018)

    Article  Google Scholar 

  • Cherepanov, I.N., Smorodin, B.L.: Convective Flow of a Colloidal Suspension in a Vertical Slot Heated from Side Wall. Microgravity Sci. Technol. 30, 63–68 (2018)

    Article  Google Scholar 

  • Cho, Y., Yum, S., Lee, J., Park, G.: Development of bubble departure and lift-off diameter models in low heat flux and low flow velocity conditions. Int. J. Heat Mass Transf. 54, 3234–3244 (2011)

    Article  Google Scholar 

  • Cui, F.L., Hong, F.J., Li, C.: Two-phase flow instability in distributed jet array impingement boiling on pin-fin structured surface and its affecting factors. Int. J. Heat Mass Transf. 143, 118495 (2019)

    Article  Google Scholar 

  • Gao, M., Zhang, L.S., Zhang, D., Zhang, L.: Experimental study on the enhancement of free convection heat transfer under the action of an electric field. Exp. Thermal Fluid Sci. 104, 9–14 (2019)

    Article  Google Scholar 

  • Graves, J.E., Latvytė, E., Greenwood, A., Emekwuru, N.G.: Ultrasonic preparation, stability and thermal conductivity of a capped copper-methanol nanofluid. Ultrason. Sonochem. 55, 2–31 (2019)

    Article  Google Scholar 

  • Guedia, G., Prodanovic, V., Militzer, M.: Modeling of transient bottom jet impingement boiling. Int. J. Heat Mass Transf. 136, 1160–1170 (2019)

    Article  Google Scholar 

  • Kaithakkal, A.J., Kametani, Y., Hasegawa, Y.: Dissimilar heat transfer enhancement in a fully developed laminar channel flow subjected to a traveling wave-like wall blowing and suction. Int. J. Heat Mass Transf. 164, 120485 (2021)

  • Kærn, M.R., Markussen, W.B., Meyer, K.E., Elmegaard, B., Palm, B.: Experimental comparison and visualization of in-tube continuous and pulsating flow boiling. Int. J. Heat Mass Transf. 125, 229–242 (2018)

    Article  Google Scholar 

  • Karpunin, I., Kozlov, N.: Dynamics of Two-liquid System at Rotation and Vibration with Equal Frequencies. Microgravity Sci. Technol. 32, 973–982 (2020)

    Article  Google Scholar 

  • Klausner, J.F., Mei, R., Bernhard, D.M., Zeng, L.Z.: Vapor bubble departure in forced convection boiling. Int. J. Heat Mass Transf. 36, 651–662 (1993)

    Article  Google Scholar 

  • Kong, X., Wei, J.J., Deng, Y.P., Zhang, Y.H.: A Study on Enhancement of Boiling Heat Transfer by Mixed-Wettability Surface. Heat Transfer Eng. 39, 1552–1561 (2018a)

    Article  Google Scholar 

  • Kong, X., Zhang, Y.H., Wei, J.J.: Experimental study of pool boiling heat transfer on novel bistructured surfaces based on micro-pin-finned structure. Exp. Thermal Fluid Sci. 91, 9–19 (2018b)

    Article  Google Scholar 

  • Lee, J., O’Neill, L.E., Mudawar, I.: 3-D computational investigation and experimental validation of effect of shear-lift on two-phase flow and heat transfer characteristics of highly subcooled flow boiling in vertical upflow. Int. J. Heat Mass Transf. 150, 119291 (2020)

    Article  Google Scholar 

  • Lei, Y.C., Mudawar, I., Chen, Z.Q.: Computational and experimental investigation of condensation flow patterns and heat transfer in parallel rectangular micro-channels. Int. J. Heat Mass Transf. 149, 119158 (2020)

    Article  Google Scholar 

  • Li, D., Wang, T., Chen, S., Liu, Q.Y., Xie, Y.B., Liu, C.T.: Experimental Investigation on Droplet Deformation and Breakup under Uniform DC Electric Field. Microgravity Sci. Technol. 32, 837–845 (2020)

    Article  Google Scholar 

  • Liu, B., Liu, J., Zhang, Y.H., Wei, J.J., Wang, W.J.: Experimental and theoretical study of pool boiling heat transfer and its CHF mechanism on femtosecond laser processed surfaces. Int. J. Heat Mass Transf. 132, 259–270 (2019)

    Article  Google Scholar 

  • Mira-Hernández, C., Weibel, J.A., Garimella, S.V.: Visualizing near-wall two-phase flow morphology during confined and submerged jet impingement boiling to the point of critical heat flux. Int. J. Heat Mass Transf. 142, 118407 (2019)

    Article  Google Scholar 

  • Qu, X.H., Fang, D.,  Qi, X.N.: Direct contact heat transfer enhancement between two stratified immiscible fluids by artificial interface oscillations. Int. J. Heat Mass Transf. 138, 226–234 (2019)

  • Ren, J.R., Zhu, Z.L., Qiu, Y.L., Yu, F. , Ma, J., Zhao, J.F.: Magnetic field assisted adsorption of pollutants from an aqueous solution: a review, J. Hazard Mater. 408, 124846 (2020)

  • Sadaghiani, A.K., Rajabnia, H., Çelik, S., Noh, H., Kwak, H.J., Nejatpour, M., Park, H.S., Acar, H.Y., Mısırlıoğlu, B., Özdemir, M.R., Koşar, A.: Pool boiling heat transfer of ferrofluids on structured hydrophilic and hydrophobic surfaces: The effect of magnetic field. Int. J. Therm. Sci. 155, 106420 (2020)

    Article  Google Scholar 

  • Said, Z.: Thermophysical and optical properties of SWCNTs nanofluids. Int. Commun. Heat Mass Transfer 78, 207–213 (2016)

    Article  Google Scholar 

  • Shi, J., Jia, X., Feng, D.Y., Chen, Z.Q., Dang, C.B.: Wettability effect on pool boiling heat transfer using a multiscale copper foam surface. Int. J. Heat Mass Transf. 146, 118726 (2020)

    Article  Google Scholar 

  • Sinha, G.K., Srivastava, A.: Whole field measurements to quantify the thermal impact of single vapor bubble under nucleate flow boiling regime. Int. J. Heat Mass Transf. 157, 119932 (2020)

    Article  Google Scholar 

  • Sun, B., Guo, Y.J., Yang, D., Li, H.W.: The effect of constant magnetic field on convective heat transfer of Fe3O4/water magnetic nanofluid in horizontal circular tubes. Appl. Therm. Eng. 171, 114920 (2020)

    Article  Google Scholar 

  • Taitel, Y., Bornea, D., Dukler, A.E.: Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J. 26, 345–354 (1980)

    Article  Google Scholar 

  • Tang, J.C., Hu, X.G., Yu, Y.Y.: Electric field effect on the heat transfer enhancement in a vertical rectangular microgrooves heat sink. Int. J. Therm. Sci. 150, 106222 (2020)

    Article  Google Scholar 

  • Tao, H.Z., Rui, L., Li, W., Cheng, J.J.: Numerical study on effect of oscillation center position on heat transfer and flow internal tube. Int. J. Heat Mass Transf. 137, 799–808 (2019)

  • Turan, O., Çuhadaroğlu, B.: The effects of uniform injection and suction on heat transfer with viscous dissipation through a permeable surface in zero pressure gradient. Int. Commun. Heat Mass Transfer 119, 104972 (2020)

    Article  Google Scholar 

  • Wang, H.N., Yang, W.Q., Yan, X.K., Wang, L.J., Wang, Y.T., Zhang, H.J.: Regulation of bubble size in flotation: A review. J. Environ. Chem. Eng. 8, 104070 (2020)

    Article  Google Scholar 

  • Yuan, B., Zhang, Y.H., Liu, L., Wei, J.J.: Experimental research on subcooled flow boiling heat transfer performance and associated bubble characteristics under pulsating flow. Appl. Therm. Eng. 157, 113721 (2019)

    Article  Google Scholar 

  • Zhang, L.G., Shi, J., Xu, B., Chen, Z.Q.: Experimental Study on Distribution Characteristics of Condensate Droplets Under Ultrasonic Vibration. Microgravity Sci. Technol. 30, 737–746 (2018a)

    Article  Google Scholar 

  • Zhang, Y.H., Zhou, J., Zhou, W.J., Qi, B.J., Wei, J.J.: CHF correlation of boiling in FC-72 with micro-pin-fins for electronics cooling. Appl. Therm. Eng. 138, 494–500 (2018)

Download references

Acknowledgements

This work is supported by the Basic Research Project of Shenzhen Knowledge Innovation Program (No.JCYJ20180306170627132), National Natural Science Foundation of China (No.51976163, 51636006, 51961135102), Young Elite Scientists Sponsorship Program by CAST (No.2018QNRC001), Natural Science Basic Research Plan in Shaanxi Province of China (No.2019JQ-597), China Postdoctoral Science Foundation funded project (No.2019M663708), ESA-CMSA Joint Boiling Project(No.TGMTYY00-RW-05-1.00), and Shaanxi Creative Talents Promotion Plan-Technological Innovation Team (No.2019TD-039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghai Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, W., Liu, B. et al. Experimental Study of Enhanced Boiling Heat Transfer with Suction. Microgravity Sci. Technol. 33, 39 (2021). https://doi.org/10.1007/s12217-021-09880-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12217-021-09880-w

Keywords

Navigation