Skip to main content

Advertisement

Log in

Integrated scheduling problem for earth observation satellites based on three modeling frameworks: an adaptive bi-objective memetic algorithm

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

With the number of on-orbit earth observation satellites (EOSs) increases, satellite image data downlink scheduling problem is becoming the bottleneck for restricting EOSs to capture more image data. Therefore, Integrated scheduling problem for earth observation satellites is imperative, which optimizes data acquisition and data transmission simultaneously. In this paper, three different modelling frameworks, SSF, CSF and CISF, are investigated to formulate the ISPFEOS as a bi-objective optimization model along with an adaptive bi-objective memetic algorithm (ALNS + NSGA-II), which integrates the combined power of an adaptive large neighborhood search algorithm (ALNS) and a nondominated sorting genetic algorithm II (NSGA-II). In addition, two types of operators, “Destroy” operators and “Repair” operators, are designed to improve the ALNS + NSGA-II. Results of extensive computational experiments are presented which disclose that the CISF model produced superior outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Actually speaking, this attribute should be defined in the ground station. But, we define it as an attribute of EOS for convince.

  2. A ground target with several VTWs, belongs to one EOS or several EOSs, will be clone as several ground targets with the same target identifier but different VTWs, different window identifier and EOSs.

  3. In the first iteration, all operators will be used in the equal possibility, then they will be chosen by the roulette wheel mechanism.

  4. Their experiments have shown that such a TS implementation performs poorly on DRPP, so we do not consider TS as a compared algorithm.

References

  1. Barbulescu L, Watson J-P, Whitley LD, Howe AE (2004) Scheduling space-ground communications for the air force satellite control network. J Sched 1:7–34. https://doi.org/10.1023/B:JOSH.0000013053.32600.3c

    Article  MATH  Google Scholar 

  2. Berger J, Lo N, Barkaoui M (2020) QUEST—a new quadratic decision model for the multi-satellite scheduling problem. Comput Oper Res. https://doi.org/10.1016/j.cor.2019.104822

    Article  MathSciNet  MATH  Google Scholar 

  3. Bianchessi N, Righini G (2008) Planning and scheduling algorithms for the COSMO-SkyMed constellation. Aerosp Sci Technol 12(7):535–544. https://doi.org/10.1016/j.ast.2008.01.001

    Article  Google Scholar 

  4. Bontoux B, Artigues C, Feillet D (2010) A Memetic Algorithm with a large neighborhood crossover operator for the generalized traveling salesman problem. Comput Oper Res 37(11):1844–1852. https://doi.org/10.1016/j.cor.2009.05.004

    Article  MathSciNet  MATH  Google Scholar 

  5. Bradstreet L, While L, Barone L (2008) A fast incremental hypervolume algorithm. IEEE Trans Evolut Comput 12(6):714–723. https://doi.org/10.1109/tevc.2008.919001

    Article  Google Scholar 

  6. Chang ZX, Chen YN, Yang WY, Zhou ZB (2020) Mission planning problem for optical video satellite imaging with variable image duration: a greedy algorithm based on heuristic knowledge. Adv Space Res 66(11):2597–2609. https://doi.org/10.1016/j.asr.2020.09.002

    Article  Google Scholar 

  7. Corne D, Knowles J (2007) Techniques for highly multiobjective optimisation: some nondominated points are better than others. In: Paper presented at the proceedings of GECCO 2007: genetic and evolutionary computation conference

  8. Dawkins R (1976) The selfish gene. Clarendon Press, Oxford

    Google Scholar 

  9. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  10. Du Y, Xing L, Zhang J, Chen Y, He Y (2019) MOEA based memetic algorithms for multi-objective satellite range scheduling problem. Swarm Evolut Comput. https://doi.org/10.1016/j.swevo.2019.100576

    Article  Google Scholar 

  11. Durillo JJ, Nebro AJ (2011) jMetal: a Java framework for multi-objective optimization. Adv Eng Softw 42(10):760–771. https://doi.org/10.1016/j.advengsoft.2011.05.014

    Article  Google Scholar 

  12. Galinier P, Boujbel Z, Coutinho Fernandes M (2011) An efficient memetic algorithm for the graph partitioning problem. Ann Oper Res 191(1):1–22. https://doi.org/10.1007/s10479-011-0983-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Gong MG, Jiao LC, Yang DD, Ma WP (2009) Research on evolutionary multi-objective optimization algorithms. J Softw 2(20):271–289. https://doi.org/10.3724/SP.J.1001.2009.03483

    Article  MathSciNet  MATH  Google Scholar 

  14. Grasset-Bourdel R, Verfaillie G, Flipo A (2011) Planning and replanning for a constellation of agile earth observation satellites. In: Paper presented at the proceedings of the 21st international conference on automated planning and scheduling

  15. Gu X, Bai J, Zhang C, Gao H (2014) Study on TT&C resources scheduling technique based on inter-satellite link. Acta Astronaut 104(1):26–32. https://doi.org/10.1016/j.actaastro.2014.07.007

    Article  Google Scholar 

  16. Guo H, Liu J, Li A, Zhang J (2012) Earth observation satellite data receiving, processing system and data sharing. Int J Digital Earth 5(3):241–250. https://doi.org/10.1080/17538947.2012.669963

    Article  Google Scholar 

  17. Hamacher HW, Pedersen CR, Ruzika S (2007) Finding representative systems for discrete bicriterion optimization problems. Oper Res Lett 35(3):336–344. https://doi.org/10.1016/j.orl.2006.03.019

    Article  MathSciNet  MATH  Google Scholar 

  18. Hao C, Jiangjiang W, Wenyuan S (2016) Coordinate scheduling approach for EDS observation tasks and data transmission jobs. J Syst Eng Electron 27(4):822–835. https://doi.org/10.21629/jsee.2016.04.11

    Article  Google Scholar 

  19. He L, de Weerdt M, Yorke-Smith N (2019) Time/sequence-dependent scheduling: the design and evaluation of a general purpose tabu-based adaptive large neighbourhood search algorithm. J Intell Manuf 31(4):1051–1078. https://doi.org/10.1007/s10845-019-01518-4

    Article  Google Scholar 

  20. He L, Liu X-L, Chen Y-W, Xing L-N, Liu K (2019) Hierarchical scheduling for real-time agile satellite task scheduling in a dynamic environment. Adv Space Res 63(2):897–912. https://doi.org/10.1016/j.asr.2018.10.007

    Article  Google Scholar 

  21. He L, Liu XL, Laporte G, Chen YW, Chen YG (2018) An improved adaptive large neighborhood search algorithm for multiple agile satellites scheduling. Comput Oper Res 100:12–25. https://doi.org/10.1016/j.cor.2018.06.020

    Article  MathSciNet  MATH  Google Scholar 

  22. Hu Q, Wei L, Lim A (2018) The two-dimensional vector packing problem with general costs. Omega 74:59–69. https://doi.org/10.1016/j.omega.2017.01.006

    Article  Google Scholar 

  23. Hu X, Zhu W, An B, Jin P, Xia W (2019) A branch and price algorithm for EOS constellation imaging and downloading integrated scheduling problem. Comput Oper Res 104:74–89. https://doi.org/10.1016/j.cor.2018.12.007

    Article  MathSciNet  MATH  Google Scholar 

  24. Kadziński M, Tervonen T, Tomczyk MK, Dekker R (2017) Evaluation of multi-objective optimization approaches for solving green supply chain design problems. Omega 68:168–184. https://doi.org/10.1016/j.omega.2016.07.003

    Article  Google Scholar 

  25. Karapetyan D, Mitrovic Minic S, Malladi KT, Punnen AP (2015) Satellite downlink scheduling problem: a case study. Omega 53:115–123. https://doi.org/10.1016/j.omega.2015.01.001

    Article  Google Scholar 

  26. Kidd MP, Lusby R, Larsen J (2020) Equidistant representations: connecting coverage and uniformity in discrete biobjective optimization. Comput Oper Res. https://doi.org/10.1016/j.cor.2019.104872

    Article  MathSciNet  MATH  Google Scholar 

  27. Lemaı̂treVerfaillie MG, Jouhaud F, Lachiver JM, Bataille N (2002) Selecting and scheduling observations of agile satellites. Aerosp Sci Technol 6(5):367–381. https://doi.org/10.1016/S1270-9638(02)01173-2

    Article  Google Scholar 

  28. Li G (2020) Online scheduling of distributed earth observation satellite system under rigid communication constraints. Adv Space Res 65(11):2475–2496. https://doi.org/10.1016/j.asr.2020.02.018

    Article  Google Scholar 

  29. Li J, Li J, Chen H, Jing N (2014) A data transmission scheduling algorithm for rapid-response earth-observing operations. Chin J Aeronaut 27(2):349–364. https://doi.org/10.1016/j.cja.2014.02.014

    Article  Google Scholar 

  30. Li Z, Li X (2019) A multi-objective binary-encoding differential evolution algorithm for proactive scheduling of agile earth observation satellites. Adv Space Res 63(10):3258–3269. https://doi.org/10.1016/j.asr.2019.01.043

    Article  Google Scholar 

  31. Liu XL, Laporte G, Chen YW, He RJ (2017) An adaptive large neighborhood search metaheuristic for agile satellite scheduling with time-dependent transition time. Comput Oper Res 86:41–53. https://doi.org/10.1016/j.cor.2017.04.006

    Article  MathSciNet  MATH  Google Scholar 

  32. Malladi KT, Minic SM, Karapetyan D, Punnen AP (2016) Satellite constellation image acquisition problem: a case study. In: Fasano G, Pintér JD (eds) Space engineering. Springer Optimization and Its Applications, vol 114. Springer, Berlin, pp 177–197. https://doi.org/10.1007/978-3-319-41508-6_7

    Chapter  Google Scholar 

  33. Marinelli F, Nocella S, Rossi F, Smriglio S (2011) A Lagrangian heuristic for satellite range scheduling with resource constraints. Comput Oper Res 38(11):1572–1583. https://doi.org/10.1016/j.cor.2011.01.016

    Article  MathSciNet  MATH  Google Scholar 

  34. McElroy J (1996) Observation of the earth and its environment: survey of missions and sensors, third edition (BR). Eos Trans Am Geophys Union 77:292–292. https://doi.org/10.1029/96EO00211

    Article  Google Scholar 

  35. Na C (2016) China's first overseas land satellite receiving station put into operation. Retrieved from http://english.cas.cn/newsroom/archive/news_archive/nu2016/201612/t20161215_172471.shtml

  36. Neri F, Cotta C (2012) Memetic algorithms and memetic computing optimization: a literature review. Swarm Evolut Comput 2:1–14. https://doi.org/10.1016/j.swevo.2011.11.003

    Article  Google Scholar 

  37. Niu XN, Tang H, Wu LX (2018) Satellite scheduling of large areal tasks for rapid response to natural disaster using a multi-objective genetic algorithm. Int J Disaster Risk Reduct 28:813–825. https://doi.org/10.1016/j.ijdrr.2018.02.013

    Article  Google Scholar 

  38. Peng GS, Dewil R, Verbeeck C, Gunawan A, Xing LN, Vansteenwegen P (2019) Agile earth observation satellite scheduling: an orienteering problem with time-dependent profits and travel times. Comput Oper Res 111:84–98. https://doi.org/10.1016/j.cor.2019.05.030

    Article  MathSciNet  MATH  Google Scholar 

  39. Peng GS, Song GP, Xing LN, Gunawan A, Vansteenwegen P (2020) An exact algorithm for agile earth observation satellite scheduling with time-dependent profits. Comput Oper Res. https://doi.org/10.1016/j.cor.2020.104946

    Article  MathSciNet  MATH  Google Scholar 

  40. Peng S, Chen H, Li J, Jing N (2017) Approximate path searching method for single-satellite observation and transmission task planning problem. Math Prob Eng 2017:1–16. https://doi.org/10.1155/2017/7304506

    Article  MathSciNet  MATH  Google Scholar 

  41. Pisinger D, Stefan R (2005) A general heuristic for vehicle routing problems. Comput Oper Res 34:2403–2435. https://doi.org/10.1016/j.cor.2005.09.012

    Article  MathSciNet  MATH  Google Scholar 

  42. Purshouse RC, Fleming PJ (2007) On the evolutionary optimization of many conflicting objectives. IEEE Trans Evolut Comput 11(6):770–784. https://doi.org/10.1109/tevc.2007.910138

    Article  Google Scholar 

  43. Ropke DPS (2007) A general heuristic for vehicle routing problems. Comput Oper Res 34:2403–2435. https://doi.org/10.1016/j.cor.2005.09.012

    Article  MathSciNet  MATH  Google Scholar 

  44. Ropke S, Pisinger D (2006) A unified heuristic for a large class of vehicle routing problems with backhauls. Euro J Oper Res 171(3):750–775. https://doi.org/10.1016/j.ejor.2004.09.004

    Article  MathSciNet  MATH  Google Scholar 

  45. Ropke S, David P (2006) an adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp Sci 40:455–472. https://doi.org/10.1287/trsc.1050.0135

    Article  Google Scholar 

  46. Shaw P (1998) Using constraint programming and local search methods to solve vehicle routing problems. In: Paper presented at the international conference on principles and practice of constraint programming, Berlin,Heidelberg

  47. Spangelo S, Cutler J, Gilson K, Cohn A (2015) Optimization-based scheduling for the single-satellite, multi-ground station communication problem. Comput Oper Res 57:1–16. https://doi.org/10.1016/j.cor.2014.11.004

    Article  MathSciNet  MATH  Google Scholar 

  48. Srinivas N, Deb K (1995) Multi-objective function optimization using nondominated sorting genetic algorithms. Evolut Comput 3(2):221–248. https://doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  49. Tangpattanakul P, Jozefowiez N, Lopez P (2015) A multi-objective local search heuristic for scheduling earth observations taken by an agile satellite. Euro J Oper Res 245(2):542–554. https://doi.org/10.1016/j.ejor.2015.03.011

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang H, Yang Z, Zhou W, Li D (2019) Online scheduling of image satellites based on neural networks and deep reinforcement learning. Chin J Aeron 32(4):1011–1019. https://doi.org/10.1016/j.cja.2018.12.018

    Article  Google Scholar 

  51. Wang JJ, Zhu XM, Yang LT, Zhu JH, Ma MH (2015) Towards dynamic real-time scheduling for multiple earth observation satellites. J Comput Syst Sci 81(1):110–124. https://doi.org/10.1016/j.jcss.2014.06.016

    Article  Google Scholar 

  52. Wang P, Reinelt G (2010) A heuristic for an earth observing satellite constellation scheduling problem with download considerations. Electr Notes Discr Math 36:711–718. https://doi.org/10.1016/j.endm.2010.05.090

    Article  MATH  Google Scholar 

  53. Wang P, Reinelt G, Gao P, Tan Y (2011) A model, a heuristic and a decision support system to solve the scheduling problem of an earth observing satellite constellation. Comput Ind Eng 61(2):322–335. https://doi.org/10.1016/j.cie.2011.02.015

    Article  Google Scholar 

  54. Wang R, Purshouse RC, Fleming PJ (2013) Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Trans Evolut Comput 17(4):474–494. https://doi.org/10.1109/tevc.2012.2204264

    Article  Google Scholar 

  55. Wang S, Zhao L, Cheng JH, Zhou JF, Wang YP (2019) Task scheduling and attitude planning for agile earth observation satellite with intensive tasks. Aerosp Sci Technol 90:23–33. https://doi.org/10.1016/j.ast.2019.04.007

    Article  Google Scholar 

  56. Wang XW, Chen Z, Han C (2016) Scheduling for single agile satellite, redundant targets problem using complex networks theory. Chaos Solitons Fractals 83:125–132. https://doi.org/10.1016/j.chaos.2015.12.003

    Article  MathSciNet  MATH  Google Scholar 

  57. Wolfe WJ, Sorensen SE (2000) Three scheduling algorithms applied to the earth observing systems domain. Manag Sci 46(1):148–166. https://doi.org/10.1287/mnsc.46.1.148.15134

    Article  MATH  Google Scholar 

  58. Wu D, Chen Y, Li Q, Xu Z, Feng H, Man Y (2020) Attitude scheduling and verification for dynamic imaging of agile satellites. Optik. https://doi.org/10.1016/j.ijleo.2020.164365

    Article  Google Scholar 

  59. Wu K, Zhang DX, Chen ZH, Chen JL, Shao XW (2019) Multi-type multi-objective imaging scheduling method based on improved NSGA-III for satellite formation system. Adv Space Res 63(8):2551–2565. https://doi.org/10.1016/j.asr.2019.01.006

    Article  Google Scholar 

  60. Wu X, Che A (2019) A memetic differential evolution algorithm for energy-efficient parallel machine scheduling. Omega 82:155–165. https://doi.org/10.1016/j.omega.2018.01.001

    Article  Google Scholar 

  61. Wu X, Che A (2020) Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search. Omega. https://doi.org/10.1016/j.omega.2019.102117

    Article  Google Scholar 

  62. Xiao Y, Zhang S, Yang P, You M, Huang J (2019) A two-stage flow-shop scheme for the multi-satellite observation and data-downlink scheduling problem considering weather uncertainties. Reliab Eng Syst Saf 188:263–275. https://doi.org/10.1016/j.ress.2019.03.016

    Article  Google Scholar 

  63. Xinwei Wang GW, Xing L, Pedrycz W (2020) Agile Earth observation satellite scheduling over 20 years: formulations, methods and future directions. IEEE Syst J. https://doi.org/10.1109/JSYST.2020.2997050

    Article  Google Scholar 

  64. Xu R, Chen HP, Liang XL, Wang HM (2016) Priority-based constructive algorithms for scheduling agile earth observation satellites with total priority maximization. Expert Syst Appl 51:195–206. https://doi.org/10.1016/j.eswa.2015.12.039

    Article  Google Scholar 

  65. Xu YJ, Liu XL, He RJ, Chen YG (2020) Multi-satellite scheduling framework and algorithm for very large area observation. Acta Astron 167:93–107. https://doi.org/10.1016/j.actaastro.2019.10.041

    Article  Google Scholar 

  66. Yadegari E, Alem-Tabriz A, Zandieh M (2019) A memetic algorithm with a novel neighborhood search and modified solution representation for closed-loop supply chain network design. Comput Ind Eng 128:418–436. https://doi.org/10.1016/j.cie.2018.12.054

    Article  Google Scholar 

  67. Zhang J, Xing L, Peng G, Yao F, Chen C (2019) A large-scale multiobjective satellite data transmission scheduling algorithm based on SVM+NSGA-II. Swarm Evolut Comput. https://doi.org/10.1016/j.swevo.2019.100560

    Article  Google Scholar 

  68. Zhang QF, Li H (2007) MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans Evolut Comput 11(6):712–731. https://doi.org/10.1109/tevc.2007.892759

    Article  Google Scholar 

  69. Zhang Z, Liu M, Lim A (2015) A memetic algorithm for the patient transportation problem. Omega 54:60–71. https://doi.org/10.1016/j.omega.2015.01.011

    Article  Google Scholar 

  70. Zhao L, Wang S, Hao Y, Wang Y (2019) Energy-dependent mission planning for agile earth observation satellite. J Aerosp Eng 32:1. https://doi.org/10.1061/(asce)as.1943-5525.0000949

    Article  Google Scholar 

  71. Zhao W-H, Zhao J, Zhao S-H, Li Y-J, Dong Y, Dong C, Li X (2014) Resources scheduling for data relay satellite with microwave and optical hybrid links based on improved niche genetic algorithm. Optik 125(13):3370–3375. https://doi.org/10.1016/j.ijleo.2013.12.042

    Article  Google Scholar 

  72. Zufferey N, Amstutz P, Giaccari P (2008) Graph colouring approaches for a satellite range scheduling problem. J Sched 11(4):263–277. https://doi.org/10.1007/s10951-008-0066-8

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to the reviewers and the editor for helpful comments which improved the presentation of our paper. We also would like to appreciate all the researchers and their studies we cited. This work was completed when Zhongxiang Chang visited at the Simon Fraser University, Canada under the CSC scholarship program of the Peoples Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiang Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Z., Zhou, Z., Xing, L. et al. Integrated scheduling problem for earth observation satellites based on three modeling frameworks: an adaptive bi-objective memetic algorithm. Memetic Comp. 13, 203–226 (2021). https://doi.org/10.1007/s12293-021-00333-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-021-00333-w

Keywords

Navigation