Skip to main content
Log in

Influence of Thermal Expansion in an Inhomogeneous Stationary Temperature Field on the Inhomogeneous Stress-Strain State of an Incompressible Elastomer Solid under Static Finite Deformations

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract—

A modification of the statement of the problem of statics of a homogeneous isotropic incompressible material at finite deformations is proposed, taking into account thermal expansion. The influence of thermal expansion in an inhomogeneous stationary temperature field on the inhomogeneous stress-strain state of a solid is considered by the example of a cylindrical sleeve subjected to a finite longitudinal shear. The influence of an inhomogeneous temperature field on the stress-strain state in the transverse plane of a cylindrical sleeve, generated by both a finite longitudinal shear and thermal expansion, has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. I. Lurie, Nonlinear Theory of Elasticity (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  2. C. Truesdell and W. Noll, The Non-Linear Field Theories of Mechanics (Springer, New York, 2003).

    MATH  Google Scholar 

  3. J. D. Macon, “Thermal and mechanical behavior of rubber systems,” Doctoral Dissertations 1997, (Univ. of Massachusetts Amherst, 1997). http://scholarworks.umass.edu/dissertations_1/956.

  4. B. Dippel, M. Johlitz and A. Lion, “Thermo-mechanical couplings in elastomers – experiments and modelling,” Z. Angew. Math. Mech. 95 (11), 1117–1128 (2015). https://doi.org/10.1002/zamm.201400110

    Article  MATH  Google Scholar 

  5. D. W. Nicholson and B. Lin, “Theory of the termohyperelasticity for near-incompressible elastomers,” Acta Mech. 116 (1-4), 15–28 (1996). https://doi.org/10.1007/bf01171417

    Article  MATH  Google Scholar 

  6. B. A. Zhukov, “The effect of a uniform stationary temperature field on the stress-strain state of elastomers under static large deformations,” Mech. Solids 54 (8), 1240–1249 (2019). https://doi.org/10.3103/S0025654419080144

    Article  ADS  Google Scholar 

  7. P. Chadwick, “Thermo-mechanics of rubberlike materials,” Phll. Trans. Soc. Lond. A 276, 371–403 (1974). https://doi.org/10.1098/rsta.1974.0026

    Article  ADS  MATH  Google Scholar 

  8. R. W. Ogden, “On the thermoelastic modeling of rubberlike solids,” J. Therm. Stress. 15 (4), 533–557 (1992). https://doi.org/10.1080/01495739208946155

    Article  MathSciNet  Google Scholar 

  9. V. A. Palmov, Constitutive Equations of Thermoelastic, Thermoviscous and Thermoplastic Materials (Polytekhn. Univ., St. Petersburg, 2009) [in Russian].

    Google Scholar 

  10. D. D. Chen and H. J. Petroski, “Controllable states of elastic heat conductors obeying a Fourier law,” Int. J. Eng. Sci. 13, 799–814 (1975).

    Article  MathSciNet  Google Scholar 

  11. W. C. Muller, “Universal solutions for thermodynamic Fourier material,” Q. Appl. Math. 33 (3), 281–290 (1975).

    Article  MathSciNet  Google Scholar 

  12. G. Saccomandi, “On inhomogeneous deformations in finite thermoelasticity,” IMA J. Appl. Math. 63, 131–148 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  13. H. J. Petroski, “On the finite deformation and heating of thermoelastic spherical sectors,” Int. J. Non-Lin. Mech. 10, 327–332 (1975).

    MathSciNet  MATH  Google Scholar 

  14. C. Horgan and G. Saccomandi, “Finite thermoelasticity with limiting chain extensibility,” J. Mech. Phys. Solids 51, 1127–1146 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  15. M. E. Gurtin and P. P. Guidugli, “Thermodynamics of constrained materials,” Arch. Rat. Mech. Anal. 51, 192–208 (1973).

    Article  MathSciNet  Google Scholar 

  16. H. H. Erbe, “Thermoelastic effects in incompressible elastic solids,” Mech. Res. Commun. 1, 137–142 (1974).

    Article  Google Scholar 

  17. J. A. Trapp, “Reinforced materials with thermo-mechanical constraints,” Int. J. Eng. Sci. 9, 757–773 (1971).

    Article  Google Scholar 

  18. E. I. Grigolyuk and P. Ya. Nosatenko, “Plane geometrically nonlinear stress-strain state of a cylinder in shear,” Izv. Vyssh. Uchebn. Zaved. Mashinostr., No. 2, 28–31 (1986).

  19. C. O. Horgan and M. G. Smayda, “The importance of the second strain invariant in the constitutive modeling of elastomers and soft biomaterials,” Mech. Mat. 51, 43–52 (2012). https://doi.org/10.1016/j.mechmat.2012.03.007

    Article  Google Scholar 

  20. B. A. Zhukov, “Plane stress-strain state of a circular cylindrical bushing due to a finite out-of-plane shear,” Mech. Solids 52 (1), 111–117 (2017). https://doi.org/10.3103/S0025654417010125

    Article  ADS  Google Scholar 

  21. B. A. Zhukov, “Nonlinear interaction of finite longitudinal shear with finite torsion of a rubber-like bushing,” Mech. Solids 50 (3), 337–344 (2015). https://doi.org/10.3103/S0025654415030097

    Article  ADS  Google Scholar 

  22. M. F. Bukhina, Technical Physics of Elastomers (Khimiya, Moscow, 1984) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Zhukov.

Additional information

Translated by I. K. Katuev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, B.A. Influence of Thermal Expansion in an Inhomogeneous Stationary Temperature Field on the Inhomogeneous Stress-Strain State of an Incompressible Elastomer Solid under Static Finite Deformations. Mech. Solids 56, 150–161 (2021). https://doi.org/10.3103/S0025654421020151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654421020151

Keywords:

Navigation