Skip to main content
Log in

Renormalised energies and renormalisable singular harmonic maps into a compact manifold on planar domains

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We define renormalised energies for maps that describe the first-order asymptotics of harmonic maps outside of singularities arising due to obstructions generated by the boundary data and the mutliple connectedness of the target manifold. The constructions generalise the definition by Bethuel et al. (Ginzburg–Landau vortices, progress in nonlinear differential equations and their applications, vol 13, Birkhäuser, Boston, 1994) for the circle. In general, the singularities are geometrical objects and the dependence on homotopic singularities can be studied through a new notion of synharmony. The renormalised energies are showed to be coercive and Lipschitz-continuous. The renormalised energies are associated to minimising renormalisable singular harmonic maps and minimising configurations of points can be characterised by the flux of the stress–energy tensor at the singularities. We compute the singular energy and the renormalised energy in several particular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Such an embedding always exist in view of the Nash embedding theorem [36].

  2. Note that T could be a merging time for which \(A(T)\not \subset \Omega \), while \(A^-(T)\subset \Omega \) by construction.

  3. Note that the the flux of the stress–energy tensor through a small circle centered at the singularity \(a_i\) is independant of the (small) radius since the stress–energy tensor is divergence-free away from singularities.

References

  1. Ahlfors, L.V.: Complex Analysis. An Introduction to the Theory of Analytic Functions of One Complex Variable, Third edition, International Series in Pure and Applied Mathematics. McGraw-Hill Inc, New York (1979)

    Google Scholar 

  2. Ball, J.M., Zarnescu, A.: Orientability and energy minimisation in liquid crystal models. Arch. Ration. Mech. Anal. 202(2), 493–535 (2011). https://doi.org/10.1007/s00205-011-0421-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Bauman, P., Park, J., Phillips, D.: Analysis of nematic liquid crystals with disclination lines. Arch. Ration. Mech. Anal. 205(3), 795–826 (2012). https://doi.org/10.1007/s00205-012-0530-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Beaufort, P.-A., Lambrechts, J., Henrotte, F., Geuzaine, C., Remacle, J.-F.: Computing cross fields A PDE approach based on the Ginzburg–Landau theory. Proced. Eng. 203, 21–231 (2017)

    Article  Google Scholar 

  5. Berlyand, L., Mironescu, P., Rybalko, V., Sandier, E.: Minimax critical points in Ginzburg–Landau problems with semi-stiff boundary conditions: existence and bubbling. Commun. Partial Differ. Equ. 39(5), 946–1005 (2014). https://doi.org/10.1080/03605302.2013.851214

    Article  MathSciNet  MATH  Google Scholar 

  6. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13. Birkhäuser, Boston (1994)

    MATH  Google Scholar 

  7. Bethuel, F., Demengel, F.: Extensions for Sobolev mappings between manifolds. Calc. Var. Partial Differ. Equ. 3(4), 475–491 (1995). https://doi.org/10.1007/BF01187897

    Article  MathSciNet  MATH  Google Scholar 

  8. Brezis, H., Nirenberg, L.: Degree theory and BMO. I: compact manifolds without boundaries. Sel. Math. (N.S.) 1(2), 197–263 (1995). https://doi.org/10.1007/BF01671566

    Article  MathSciNet  MATH  Google Scholar 

  9. Brezis, H., Nirenberg, L.: Degree theory and BMO. II: compact manifolds with boundaries, with an appendix by the authors and Petru Mironescu. Sel. Math. (N.S.) 2(3), 309–368 (1996). https://doi.org/10.1007/BF01587948

    Article  MATH  Google Scholar 

  10. Campaigne, H.: Partition hypergroups. Am. J. Math. 62, 599–612 (1940). https://doi.org/10.2307/2371470

    Article  MathSciNet  MATH  Google Scholar 

  11. Canevari, G.: Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals. ESAIM Control Optim. Calc. Var. 21(1), 101–137 (2015). https://doi.org/10.1051/cocv/2014025

    Article  MathSciNet  MATH  Google Scholar 

  12. Canevari, G., Orlandi, G.: Topological singular set of vector-valued maps, II: \(\Gamma \)-convergence for Ginzburg–Landau type functionals. To appear in Arch. Ration. Mech. Anal. arXiv:2003.01354

  13. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry, North-Holland Mathematical Library, vol. 9. Elsevier, New York (1975)

    MATH  Google Scholar 

  14. Chemin, A., Henrotte, F., Remacle, J.-F., Van Schaftingen, J.: Representing three-dimensional cross fields using 4th order tensors, IMR2018: 27th International Meshing Roundtable. In: Roca, X., Loseille, A. (eds) Lecture Notes in Computational Science and Engineering, vol. 127. Springer, Cham, pp. 89–108 (2019)

  15. Dietzman, A.P.: On the multigroups of complete conjugate sets of elements of a group. C. R. (Doklady) Acad. Sci. URSS (N.S.) 49, 315–317 (1946)

    MathSciNet  MATH  Google Scholar 

  16. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. Textbooks in Mathematics, 2nd edn. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  17. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, 3rd edn. Springer, Berlin (2004)

    Book  Google Scholar 

  18. Goldman, M., Merlet, B., Millot, V.: A Ginzburg–Landau model with topologically induced free discontinuities. arXiv:1711.08668

  19. Hardt, R., Lin, F.: Singularities for p-energy minimizing unit vector fields on planar domains. Calc. Var. Partial Differ. Equ. 3(3), 311–341 (1995). https://doi.org/10.1007/BF01189395

    Article  MATH  Google Scholar 

  20. Hardt, R., Lin, F., Wang, C.: Singularities of p-energy minimizing maps. Commun. Pure Appl. Math. 50(5), 399–447 (1997). https://doi.org/10.1002/(SICI)1097-0312(199705)50:5<399::AID-CPA1>3.0.CO;2-4

  21. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  22. Hélein, F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math. 312(8), 591–596 (1991)

    MathSciNet  MATH  Google Scholar 

  23. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence (1978)

    MATH  Google Scholar 

  24. Ignat, R., Jerrard, R.L.: Interaction energy between vortices of vector fields on Riemannian surfaces. C. R. Math. Acad. Sci. Paris 355(5), 515–521 (2017). https://doi.org/10.1016/j.crma.2017.04.004

    Article  MathSciNet  MATH  Google Scholar 

  25. Ignat, R., Jerrard, R.L.: Renormalized energy between vortices in some Ginzburg–Landau models on 2-dimensional Riemannian manifolds. Arch. Ration. Mech. Anal. 239(3), 1577–1666 (2021)

    Article  MathSciNet  Google Scholar 

  26. Jerrard, R.L.: Lower bounds for generalized Ginzburg–Landau functionals. SIAM J. Math. Anal. 30(4), 721–746 (1999)

    Article  MathSciNet  Google Scholar 

  27. Lee, J.M.: Introduction to Smooth Manifolds, Graduate Texts in Mathematics, vol. 218, 2nd edn. Springer, New York (2013)

    Google Scholar 

  28. Lefter, C., Rãdulescu, V.: Minimization problems and corresponding renormalized energies. Differ. Integral Equ. 9(5), 903–917 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Luckhaus, S.: Convergence of minimisers for the \(p\)-Dirichlet integral. Math. Z. 213(3), 449–456 (1993). https://doi.org/10.1007/BF03025730

    Article  MathSciNet  MATH  Google Scholar 

  30. Mermin, N.D.: The topological theory of defects in ordered media. Rev. Mod. Phys. 51(3), 591–648 (1979). https://doi.org/10.1103/RevModPhys.51.591

    Article  MathSciNet  Google Scholar 

  31. Michor, P.W.: Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93. American Mathematical Society, Providence (2008)

    Google Scholar 

  32. Mironescu, P., Van Schaftingen, J.: Trace theory for Sobolev mappings into a manifold. Ann. Fac. Sci. Toulouse Math. (6). arXiv:2001.022256

  33. Monteil, A., Rodiac, R., Van Schaftingen, J.: Ginzburg–Landau relaxation for harmonic maps on planar domains into a general compact vacuum manifold. arXiv:2008.13512

  34. Morrey Jr., C.B.: The problem of Plateau on a Riemannian manifold. Ann. Math. (2) 49, 807–851 (1948). https://doi.org/10.2307/1969401

    Article  MathSciNet  MATH  Google Scholar 

  35. Mostow, G.D.: The extensibility of local Lie groups of transformations and groups on surfaces. Ann. Math. (2) 52, 606–636 (1950). https://doi.org/10.2307/1969437

    Article  MathSciNet  MATH  Google Scholar 

  36. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. (2) 63, 20–63 (1956). https://doi.org/10.2307/1969989

    Article  MathSciNet  MATH  Google Scholar 

  37. Rodiac, R., Ubillús, P.: Renormalized energies for unit-valued harmonic maps in multiply connected domains. arXiv:2011.02992

  38. Sandier, E.: Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal. 152(2), 379–403 (1998). https://doi.org/10.1006/jfan.1997.3170

    Article  MathSciNet  MATH  Google Scholar 

  39. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg–Landau Model, Progress in Nonlinear Differential Equations and Their Applications, vol. 70. Birkhäuser, Boston (2007)

    MATH  Google Scholar 

  40. Schoen, R.M.: Analytic aspects of the harmonic map problem, Seminar on nonlinear partial differential equations (Berkeley, Calif.: Math. Sci. Res. Inst. Publ., vol. 2. Springer, New York 1984, 321–358 (1983). https://doi.org/10.1007/978-1-4612-1110-5_17

  41. Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    MathSciNet  MATH  Google Scholar 

  42. Serfaty, S., Tice, I.: Lorentz space estimates for the Ginzburg–Landau energy. J. Funct. Anal. 254(3), 773–825 (2008). https://doi.org/10.1016/j.jfa.2007.11.010

    Article  MathSciNet  MATH  Google Scholar 

  43. Van Schaftingen, J.: Estimates by gap potentials of free homotopy decompositions of critical Sobolev maps. Adv. Nonlinear Anal. 9(1), 1214–1250 (2019). https://doi.org/10.1515/anona-2020-0047

    Article  MathSciNet  MATH  Google Scholar 

  44. Viertel, R., Osting, B.: An approach to quad meshing base-d on harmonic cross-valued maps and the Ginzburg—Landau theory. SIAM J. Sci. Comput. 41(1), A452–A479 (2019). https://doi.org/10.1137/17M1142703

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Van Schaftingen.

Ethics declarations

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A. Monteil was a postdoctoral researcher (chargé de recherches) by the Fonds de la Recherche Scientifique—FNRS over the period 2016–2019; R. Rodiac and J. Van Schaftingen were supported by the Mandat d’Impulsion Scientifique F.4523.17, “Topological singularities of Sobolev maps” of the Fonds de la Recherche Scientifique—FNRS: R.Rodiac was partially supported by the ANR project BLADE Jr. ANR-18-CE40-0023.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteil, A., Rodiac, R. & Van Schaftingen, J. Renormalised energies and renormalisable singular harmonic maps into a compact manifold on planar domains. Math. Ann. 383, 1061–1125 (2022). https://doi.org/10.1007/s00208-021-02204-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02204-8

Keyword

Mathematics Subject Classification

Navigation