Skip to main content

Advertisement

Log in

Effects of coenzyme Q10 supplementation on inflammation, angiogenesis, and oxidative stress in breast cancer patients: a systematic review and meta-analysis of randomized controlled- trials

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Background/objective

Systemic inflammation and oxidative stress (OS) are associated with breast cancer. CoQ10 as an adjuvant treatment with conventional anti-cancer chemotherapy has been demonstrated to help in the inflammatory process and OS. This systematic review and meta-analysis of randomized clinical trials (RCTs) aimed to evaluate the efficacy of CoQ10 supplementation on levels of inflammatory markers, OS parameters, and matrix metalloproteinases/tissue inhibitor of metalloproteinases (MMPs/TIMPs) in patients with breast cancer.

Methods

A systematic literature search was carried out using electronic databases, including PubMed, Web of Science, Scopus, Google Scholar, and Embase, up to December 2020 to identify eligible RCTs evaluating the effect of CoQ10 supplementation on OS biomarkers, inflammatory cytokines, and MMPs/TIMPs. From 827 potential reports, 5 eligible studies consisting of 9 trials were finally included in the current meta-analysis. Quality assessment and heterogeneity tests of the selected trials were performed using the PRISMA checklist protocol and the I2 statistic, respectively. Fixed and random-effects models were assessed based on the heterogeneity tests, and pooled data were determined as the standardized mean difference (SMD) with a 95% confidence interval (CI).

Results

Our meta-analysis of the pooled findings for inflammatory biomarkers of OS and MMPs showed that CoQ10 supplementation (100 mg/day for 45–90 days) significantly decreased the levels of VEGF [SMD: − 1.88, 95% CI: (− 2. 62 to − 1.13); I2 = 93.1%, p < 0.001], IL-8 [SMD: − 2.24, 95% CI: (− 2.68 to − 1.8); I2 = 79.6%, p = 0.001], MMP-2 [SMD: − 1.49, 95% CI: (− 1.85 to − 1.14); I2 = 76.3%, p = 0.005] and MMP-9 [SMD: − 1.58, 95% CI: (− 1.97 to − 1.19); I2 = 79.6%, p = 0.002], but no significant difference was observed between CoQ10 supplementation and control group on TNF-α [SMD: − 2.30, 95% CI: (− 2.50 to − 2.11); I2 = 21.8%, p = 0.280], IL-6 [SMD: − 1.56, 95% CI: (− 1.73 to − 1.39); I2 = 0.0%, p = 0.683], IL-1β [SMD: − 3.34, 95% CI: (− 3.58 to − 3.11); I2 = 0.0%, p = 0.561], catalase (CAT) [SMD: 1.40, 95% CI: (1.15 to 1.65); I2 = 0.0%, p = 0.598], superoxide dismutase (SOD) [SMD: 2.42, 95% CI: (2.12 to 2.71); I2 = 0.0%, p = 0.986], glutathione peroxidase (GPx) [SMD: 2.80, 95% CI: (2.49 to 3.11); I2 = 0.0%, p = 0.543]], glutathione (GSH) [SMD: 4.71, 95% CI: (4.26 to 5.16); I2 = 6.1%, p = 0.302] and thiobarbituric acid reactive substances (TBARS) [SMD: − 3.20, 95% CI: (− 3.53 to − 2.86); I2 = 29.7%, p = 0.233].

Conclusion

Overall, the findings showed that CoQ10 supplementation reduced some of the important markers of inflammation and MMPs in patients with breast cancer. However, further studies with controlled trials for other types of cancer are needed to better understand and confirm the effect of CoQ10 on tumor therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Akihama T, Nakamoto Y, Shindo T, Nakayama Y, Miura A (1983) Protective effects of coenzyme Q10 on the adverse reactions of anthracycline antibiotics: using double blind methodwith special reference to hair loss Gan to kagaku ryoho. Cancer Chemotherapy 10(10):2125–2129

    CAS  PubMed  Google Scholar 

  • Alam MA, Rahman MM (2014) Mitochondrial dysfunction in obesity: potential benefit and mechanism of Co-enzyme Q10 supplementation in metabolic syndrome. J Diabetes Meta Disorders 13(1):1–11

    Google Scholar 

  • Bahar M, Khaghani S, Pasalar P, Paknejad M, Khorramizadeh MR, Mirmiranpour H, Nejad SG (2010) Exogenous coenzyme Q10 modulates MMP-2 activity in MCF-7 cell line as a breast cancer cellular model. Nutr J 9(1):1–8

    Google Scholar 

  • Bessler H, Bergman M, Blumberger N, Djaldetti M, Salman H (2010) Coenzyme Q10 decreases TNF-α and IL-2 secretion by human peripheral blood mononuclear cells. J Nutr Sci Vitaminol 56(1):77–81

    CAS  PubMed  Google Scholar 

  • Bhagavan HN, Chopra RK (2006) Coenzyme Q10: absorption, tissue uptake, metabolism and pharmacokinetics. Free Radical Res 40(5):445–453

    CAS  Google Scholar 

  • Bocci V, Valacchi G (2013) Free radicals and anti-oxidants: how to reestablish redox homeostasis in chronic diseases? Curr Med Chem 20(27):3397–3415

    CAS  PubMed  Google Scholar 

  • Brea-Calvo G, Rodríguez-Hernández Á, Fernández-Ayala DJ, Navas P, Sánchez-Alcázar JA (2006) Chemotherapy induces an increase in coenzyme Q10 levels in cancer cell lines. Free Radical Biol Med 40(8):1293–1302

    CAS  Google Scholar 

  • Chai W, Cooney RV, Franke AA, Shvetsov YB, Caberto CP, Wilkens LR, Goossdman MT (2010) Plasma coenzyme Q10 levels and postmenopausal breast cancer risk: the multiethnic cohort study. Cancer Epidemiol Prev Biomark 19(9):2351–2356

    CAS  Google Scholar 

  • Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radical Biol Med 29(3–4):323–333

    CAS  Google Scholar 

  • Cooney RV, Dai Q, Gao Y–T, Chow W–H, Franke AA, Shu X-O, Chai W (2011) Low plasma coenzyme q10 levels and breast cancer risk in chinese women. Cancer Epidemiol Previomarkers 20(6):1124–1130

    CAS  Google Scholar 

  • Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20(6):591–598

    CAS  PubMed  Google Scholar 

  • Damkier A, Jensen A, Rose C (1994) Kræftpatienters brug af Q10. Ugeskr Læg 156:813–813

    CAS  PubMed  Google Scholar 

  • Dimitrov DS, Marks JD (2009) Therapeutic antibodies: current state and future trends–is a paradigm change coming soon? Methods Mol Biol 525:1–27

  • Domae N, Sawada H, Matsuyama E, Konishi T, Uchino H (1981) Cardiomyopathy and other chronic toxic effects induced in rabbits by doxorubicin and possible prevention by coenzyme Q10. Cancer Treat Rep 65(1–2):79–91

    CAS  PubMed  Google Scholar 

  • Ernster L, Dallner G (1995) Biochemical, physiological and medical aspects of ubiquinone function. Bioche Biophys Acta 1271(1):195–204

    Google Scholar 

  • Essers MA, Weijzen S, de Vries-Smits AM, Saarloos I, de Ruiter ND, Bos JL, Burgering BM (2004) FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 23(24):4802–4812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan L, Feng Y, Chen G-C, Qin L-Q, Fu C-L, Chen L–H (2017) Effects of coenzyme Q10 supplementation on inflammatory markers: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 119:128–136

    CAS  PubMed  Google Scholar 

  • Farsi F, Heshmati J, Keshtkar A, Irandoost P, Alamdari NM, Akbari A, Vafa M (2019) Can coenzyme Q10 supplementation effectively reduce human tumor necrosis factor-α and interleukin-6 levels in chronic inflammatory diseases? A systematic review and meta-analysis of randomized controlled trials. Pharmacol Res 148:104290

    CAS  PubMed  Google Scholar 

  • Folkers K, Morita M, McRee J (1993) The activities of coenzyme Q10 and vitamin B6 for immune responses. Biochem Biophys Res Commun 193(1):88–92

    CAS  PubMed  Google Scholar 

  • Folkers K, Osterborg A, Nylander M, Morita M, Mellstedt H (1997) Activities of vitamin Q10 in animal models and a serious deficiency in patients with cancer. Biochem Biophys Res Commun 234(2):296–299

    CAS  PubMed  Google Scholar 

  • Garrido-Maraver J, Cordero MD, Oropesa-Ávila M, Vega AF, De La Mata M, Pavón AD, Cotán D (2014) Coenzyme q10 therapy. Mole Syndromol 5(3–4):187–197

    CAS  Google Scholar 

  • Greenlee H, Shaw J, Lau Y-KI, Naini A, Maurer M (2012) Lack of effect of coenzyme q10 on doxorubicin cytotoxicity in breast cancer cell cultures. Integr Cancer Ther 11(3):243–250

    CAS  PubMed  Google Scholar 

  • Hagemann T, Robinson SC, Schulz M, Trümper L, Balkwill FR, Binder C (2004) Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-α dependent up-regulation of matrix metalloproteases. Carcinogenesis 25(8):1543–1549

    CAS  PubMed  Google Scholar 

  • Han J, Wang W, Qu C, Liu R, Li W, Gao Z, Guo X (2015) Role of inflammation in the process of clinical Kashin-Beck disease: latest findings and interpretations. Inflamm Res 64(11):853–860

    CAS  PubMed  Google Scholar 

  • Hartmann JT, Haap M, Kopp H-G, Lipp H-P (2009) Tyrosine kinase inhibitors-a review on pharmacology, metabolism and side effects. Curr Drug Metab 10(5):470–481

    CAS  PubMed  Google Scholar 

  • Herder C, Illig T, Rathmann W, Martin S, Haastert B, Müller-Scholze S, Wichmann H (2005) Inflammation and type 2 diabetes: results from KORA Augsburg. Gesundheitswesen 67:115–121

    Google Scholar 

  • Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P (2018) Coenzyme Q10 supplementation in aging and disease. Front Physiol 9:44

    PubMed  PubMed Central  Google Scholar 

  • Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3(4):276–285

    CAS  PubMed  Google Scholar 

  • Iarussi D, Auricchio U, Agretto A, Murano A, Giuliano M, Casale F, Iacono A (1994) Protective effect of coenzyme Q10 on anthracyclines cardiotoxicity: control study in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma. Mol Aspects Med 15:s207–s212

    PubMed  Google Scholar 

  • Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJM, Gavaghan DJ, McQuay HJ (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 17(1):1–12

    CAS  PubMed  Google Scholar 

  • Jolliet P, Simon N, Barre J, Pons J, Boukef M, Paniel B, Tillement J (1998) Plasma coenzyme Q10 concentrations in breast cancer: prognosis and therapeutic consequences. Int J Clin Pharmacol Ther 36(9):506–509

    CAS  PubMed  Google Scholar 

  • Jorat MV, Tabrizi R, Kolahdooz F, Akbari M, Salami M, Heydari ST, Asemi Z (2019) The effects of coenzyme Q10 supplementation on biomarkers of inflammation and oxidative stress in among coronary artery disease: a systematic review and meta-analysis of randomized controlled trials. Inflammopharmacology 27(2):233–248

    CAS  PubMed  Google Scholar 

  • Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3(6):422–433

    CAS  PubMed  Google Scholar 

  • Khan MA, Tania M, Zhang D-Z, Chen H-C (2010) Anti-oxidant enzymes and cancer. Chinese J Cancer Res 22(2):87–92

    CAS  Google Scholar 

  • Kunitomo M, Yamaguchi Y, Kagota S, Otsubo K (2008) Beneficial effect of coenzyme Q10 on increased oxidative and nitrative stress and inflammation and individual metabolic components developing in a rat model of metabolic syndrome. J Pharmacol Sci 7:0806040111–0806040111

    Google Scholar 

  • Langsjoen PH, Vadhanavikit S, Folkers K (1985) Response of patients in classes III and IV of cardiomyopathy to therapy in a blind and crossover trial with coenzyme Q10. Proc Natl Acad Sci USA 82(12):4240–4244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Libby P (2006) Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr 83(2):456S-460S

    CAS  PubMed  Google Scholar 

  • Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62(10):e1–e34

    PubMed  Google Scholar 

  • Liu H-T, Huang Y-C, Cheng S-B, Huang Y-T, Lin P-T (2015) Effects of coenzyme Q10 supplementation on anti-oxidant capacity and inflammation in hepatocellular carcinoma patients after surgery: a randomized, placebo-controlled trial. Nutr J 15(1):1–9

    Google Scholar 

  • Lockwood K, Moesgaard S, Folkers K (1994a) Partial and complete regression of breast cancer in patients in relation to dosage of coenzyme Q10. Biochem Biophys Res Commun 199(3):1504–1508

    CAS  PubMed  Google Scholar 

  • Lockwood K, Moesgaard S, Hanioka T, Folkers K (1994b) Apparent partial remission of breast cancer in ‘high risk’patients supplemented with nutritional anti-oxidants, essential fatty acids and coenzyme Q10. Mol Aspects Med 15:s231–s240

    PubMed  Google Scholar 

  • Lockwood K, Moesgaard S, Yamamoto T, Folkers K (1995) Progress on therapy of breast cancer with vitamin Q10 and the regression of metastases. Biochem Biophys Res Commun 212(1):172–177

    CAS  PubMed  Google Scholar 

  • Mathews M (2014) The effects of coenzyme Q10 on women with breast cancer: a systematic review protocol. JBI Evidence Synthesis 12(8):127–144

    Google Scholar 

  • Melnik BC (2017) p53: key conductor of all anti-acne therapies. J Transl Med 15(1):1–12

    Google Scholar 

  • Mountain DJ, Singh M, Menon B, Singh K (2007) Interleukin-1β increases expression and activity of matrix metalloproteinase-2 in cardiac microvascular endothelial cells: role of PKCα/β1 and MAPKs. Am J Physiol Cell Physiol 292(2):C867–C875

    CAS  PubMed  Google Scholar 

  • Nakopoulou L, Tsirmpa I, Alexandrou P, Louvrou A, Ampela C, Markaki S, Davaris PS (2003) MMP-2 protein in invasive breast cancer and the impact of MMP-2/TIMP-2 phenotype on overall survival. Breast Cancer Res Treat 77(2):145–155

    CAS  PubMed  Google Scholar 

  • Niklowitz P, Sonnenschein A, Janetzky B, Andler W, Menke T (2007) Enrichment of coenzyme Q10 in plasma and blood cells: defense against oxidative damage. Int J Biol Sci 3(4):257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson UW, Garvin S, Dabrosin C (2007) MMP-2 and MMP-9 activity is regulated by estradiol and tamoxifen in cultured human breast cancer cells. Breast Cancer Res Treat 102(3):253–261

    CAS  PubMed  Google Scholar 

  • Pepping J (1999) Coenzyme Q10. Am J Health Syst Pharm 56(6):519–521. https://doi.org/10.1093/ajhp/56.6.519

    Article  CAS  PubMed  Google Scholar 

  • Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Migliaccio A (2020) ROS in cancer therapy: the bright side of the moon. Exp Molecular Med 52(2):192–203

    CAS  Google Scholar 

  • Perumal SS, Shanthi P, Sachdanandam P (2005) Augmented efficacy of tamoxifen in rat breast tumorigenesis when gavaged along with riboflavin, niacin, and CoQ10: effects on lipid peroxidation and anti-oxidants in mitochondria. Chem Biol Interact 152(1):49–58

    CAS  PubMed  Google Scholar 

  • Pinnix ZK, Miller LD, Wang W, D’Agostino R, Kute T, Willingham MC, Di X (2010) Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Trans Med 2(43):4356–4356

    Google Scholar 

  • Premkumar VG, Yuvaraj S, Vijayasarathy K, Gangadaran SGD, Sachdanandam P (2007) serum cytokine levels of interleukin-1β,-6,-8, tumour necrosis factor-α and vascular endothelial growth factor in breast cancer patients treated with tamoxifen and supplemented with co-enzyme Q10, riboflavin and niacin. Basic Clin Pharmacol Toxicol 100(6):387–391

    CAS  PubMed  Google Scholar 

  • Premkumar VG, Yuvaraj S, Sathish S, Shanthi P, Sachdanandam P (2008) Anti-angiogenic potential of CoenzymeQ10, riboflavin and niacin in breast cancer patients undergoing tamoxifen therapy. Vascul Pharmacol 48(4–6):191–201

    CAS  PubMed  Google Scholar 

  • Quiles J, Farquharson A, Ramirez-Tortosa M, Grant I, Milne L, Huertas J, Wahle K (2003) Coenzyme Q differentially modulates phospholipid hydroperoxide glutathione peroxidase gene expression and free radicals production in malignant and non-malignant prostate cells. BioFactors 18(1–4):265–270

    CAS  PubMed  Google Scholar 

  • Rahmani E, Jamilian M, Samimi M, Zarezade Mehrizi M, Aghadavod E, Akbari E, Asemi Z (2018) The effects of coenzyme Q10 supplementation on gene expression related to insulin, lipid and inflammation in patients with polycystic ovary syndrome. Gynecol Endocrinol 34(3):217–222

    CAS  PubMed  Google Scholar 

  • Rhee SG, Bae SH (2015) The anti-oxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radical Biol Med 88:205–211

    CAS  Google Scholar 

  • Roffe L, Schmidt K, Ernst E (2004) Efficacy of coenzyme Q10 for improved tolerability of cancer treatments: a systematic review. J Clin Oncol 22(21):4418–4424

    CAS  PubMed  Google Scholar 

  • Sachdanandam P (2008) Antiangiogenic and hypolipidemic activity of coenzyme Q_ 10 supplementation to breast cancer patients undergoing Tamoxifen therapy. BioFactors 32(1–4):151–159

    CAS  PubMed  Google Scholar 

  • Sangsefidi ZS, Yaghoubi F, Hajiahmadi S, Hosseinzadeh M (2020) The effect of coenzyme Q10 supplementation on oxidative stress: a systematic review and meta-analysis of randomized controlled clinical trials. Food Sci Nutr 8(4):1766–1776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmelzer C, Lindner I, Rimbach G, Niklowitz P, Menke T, Döring F (2008) Functions of coenzyme Q10 in inflammation and gene expression. BioFactors 32(1–4):179–183

    CAS  PubMed  Google Scholar 

  • Schmidt K, Ernst E (2004) Assessing websites on complementary and alternative medicine for cancer. Ann Oncol 15(5):733–742

    CAS  PubMed  Google Scholar 

  • Shukla S, Dubey KK (2018) CoQ10 a super-vitamin: review on application and biosynthesis. Biotech 8(5):1–11

    Google Scholar 

  • Singh U, Devaraj S, Jialal I (2007) Coenzyme Q10 supplementation and heart failure. Nutr Rev 65(6):286–293

    PubMed  Google Scholar 

  • Soni A, Verma M, Aggarwal S, Kaushal V, Verma Y (2015) Role of coenzyme Q10 in current oncology practice: substance or shadow. OncoExpert 1:14–22

    Google Scholar 

  • Tarry-Adkins JL, Fernandez-Twinn DS, Hargreaves IP, Neergheen V, Aiken CE, Martin-Gronert MS, Ozanne SE (2016) Coenzyme Q10 prevents hepatic fibrosis, inflammation, and oxidative stress in a male rat model of poor maternal nutrition and accelerated postnatal growth. Am J Clin Nutr 103(2):579–588

    CAS  PubMed  Google Scholar 

  • Tran MT, Mitchell TM, Kennedy DT, Giles JT (2001) Role of coenzyme Q10 in chronic heart failure, angina, and hypertension. Pharma J Hum Pharmacol Drug Therapy 21(7):797–806

    CAS  Google Scholar 

  • Tudorache E, Oancea C, Avram C, Fira-Mladinescu O, Petrescu L, Timar B (2015) Balance impairment and systemic inflammation in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 10:1847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weigelt B, Peterse JL, Vant Veer LJ (2005) Breast cancer metastasis: markers and models. Nature Rev Cancer 5(8):591–602

    CAS  Google Scholar 

  • Yuvaraj S, Premkumar VG, Vijayasarathy K, Gangadaran SGD, Sachdanandam P (2008) Augmented anti-oxidant status in tamoxifen treated postmenopausal women with breast cancer on co-administration with coenzyme Q 10, niacin and riboflavin. Cancer Chemother Pharmacol 61(6):933–941

    CAS  PubMed  Google Scholar 

  • Zahrooni N, Hosseini SA, Ahmadzadeh A, Angali KA, Assarehzadegan MA (2019) The effect of coenzyme Q10 supplementation on vascular endothelial growth factor and serum levels of interleukin 6 and 8 in women with breast cancer: a double-blind, placebo-controlled, randomized clinical trial. Ther Clin Risk Manag 15:1403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zappa SB, Cassileth BR (2003) Complementary approaches to palliative oncological care. J Nurs Care Qual 18(1):22–26

    PubMed  Google Scholar 

  • Zhai J, Bo Y, Lu Y, Liu C, Zhang L (2017) Effects of coenzyme Q10 on markers of inflammation: a systematic review and meta-analysis. PLoS ONE 12(1):e0170172

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Rafiei.

Ethics declarations

Conflicts of interest

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimohammadi, M., Rahimi, A., Faramarzi, F. et al. Effects of coenzyme Q10 supplementation on inflammation, angiogenesis, and oxidative stress in breast cancer patients: a systematic review and meta-analysis of randomized controlled- trials. Inflammopharmacol 29, 579–593 (2021). https://doi.org/10.1007/s10787-021-00817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-021-00817-8

Keywords

Navigation