Skip to main content
Log in

Influence of bottom roughness and ambient pressure conditions on the emplacement of experimental dam-break granular flows

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Geophysical granular flows occur at the surface of the Earth and other planets with reduced atmospheric pressure. In this paper, we investigate the run-out of dam-break flows of particle-air mixtures with fine (\(d=75\,\upmu {\hbox {m}}\)) or coarse (\(d=150\,\upmu {\hbox {m}}\)) grains in a flume with different bottom roughness (\(\delta\)) and vacuum degrees (\(P^*\)). Our results reveal an increase of the flow run-out as \(d/\delta\) decreases for fine \(d=75 \,\upmu {\hbox {m}}\)-particles, and run-out decreases with the dimensionless ambient pressure (\(P^*\)) for a given \(d/\delta\). In contrast, the run-out for coarser \(d=150\,\upmu {\hbox {m}}\)-particles, is almost invariant respect to \(P^*\) and \(d/\delta\). These results show that autofluidization of fine-grained flows demonstrated by earlier works at ambient pressure also occurs at reduced pressure though being less efficient. Hence, autofluidization is a mechanism, among others, to explain long run-out of geophysical flows in different environments.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bareschino, P., Lirer, L., Marzocchella, A., Petrosino, P., Salatino, P.: Self-fluidization of subaerial rapid granular flows. Powder Technol. 182(3), 323–333 (2008). https://doi.org/10.1016/j.powtec.2007.12.010

    Article  Google Scholar 

  2. Bartelt, P., Buser, O., Platzer, K.: Fluctuation dissipation relations for granular snow avalanches. J. Glaciol. 52(179), 631–643 (2006). https://doi.org/10.3189/172756506781828476

    Article  ADS  Google Scholar 

  3. Bello, I.: Vacuum and Ultravacuum. CRC Press, London (2017). https://doi.org/10.1201/9781315155364

    Book  Google Scholar 

  4. Börzsönyi, T., Ecke, R.E.: Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag. Phys. Rev. E 74(6), 61301 (2006). https://doi.org/10.1103/PhysRevE.74.061301

    Article  ADS  Google Scholar 

  5. Breard, E.C.P., Dufek, J., Lube, G.: Enhanced mobility in concentrated pyroclastic density currents: an examination of a self-fluidization mechanism. Geophys. Res. Lett. 45(2), 654–664 (2018). https://doi.org/10.1002/2017GL075759

    Article  ADS  Google Scholar 

  6. Brodu, N., Delannay, R., Valance, A., Richard, P.: New patterns in high-speed granular flows. J. Fluid Mech. 769, 218–228 (2015). https://doi.org/10.1017/jfm.2015.109

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Campbell, C.S.: Self-lubrication for long runout landslides. J. Geol. 1989, 653–665 (1989). https://doi.org/10.1086/629350

    Article  ADS  Google Scholar 

  8. Chedeville, C., Roche, O.: Autofluidization of pyroclastic flows propagating on rough substrates as shown by laboratory experiments. J. Geophys. Res. Solid Earth 119(3), 1764–1776 (2014). https://doi.org/10.1002/2013JB010554

    Article  ADS  Google Scholar 

  9. Chédeville, C., Roche, O.: Influence of slope angle on pore pressure generation and kinematics of pyroclastic flows: insights from laboratory experiments. Bull. Volcanol. 77(11), 96 (2015). https://doi.org/10.1007/s00445-015-0981-4

    Article  ADS  Google Scholar 

  10. Chédeville, C., Roche, O.: Autofluidization of collapsing bed of fine particles: implications for the emplacement of pyroclastic flows. J. Volcanol. Geoth. Res. 368, 91–99 (2018). https://doi.org/10.1016/j.jvolgeores.2018.11.007

    Article  ADS  Google Scholar 

  11. Cleary, P.W., Campbell, C.S.: Self-lubrication for long runout landslides: examination by computer simulation. J. Geophys. Res. Solid Earth 98(B12), 21911–21924 (1993). https://doi.org/10.1029/93JB02380

    Article  Google Scholar 

  12. Delannay, R., Valance, A., Mangeney, A., Roche, O., Richard, P.: Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D: Appl. Phys. 50(5), 053001 (2017). https://doi.org/10.1088/1361-6463/50/5/053001

    Article  ADS  Google Scholar 

  13. Gibilaro, L.G.: Fluidization Dynamics. Elsevier, London (2001)

    Google Scholar 

  14. Goujon, C., Thomas, N., Dalloz-Dubrujeaud, B.: Monodisperse dry granular flows on inclined planes: role of roughness. Eur. Phys. J. E 11(2), 147–157 (2003). https://doi.org/10.1140/epje/i2003-10012-0

    Article  Google Scholar 

  15. Homan, T., Gjaltema, C., van der Meer, D.: Collapsing granular beds: the role of interstitial air. Phys. Rev. E 89(5), 052204 (2014). https://doi.org/10.1103/PhysRevE.89.052204

    Article  ADS  Google Scholar 

  16. Iverson, R.M.: The physics of debris. Rev. Geophys. 35(97), 245–296 (1997). https://doi.org/10.1029/97RG00426

    Article  ADS  Google Scholar 

  17. Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. Solid Earth 106(B1), 537–552 (2001). https://doi.org/10.1029/2000JB900329

    Article  Google Scholar 

  18. Iverson, R.M., Logan, M., LaHusen, R.G., Berti, M.: The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. Earth Surf. (2010). https://doi.org/10.1029/2009JF001514

    Article  Google Scholar 

  19. Lajeunesse, E., Monnier, J.B., Homsy, G.M.: Granular slumping on a horizontal surface. Phys. Fluids 17(103), 302 (2005). https://doi.org/10.1063/1.2087687

    Article  MATH  Google Scholar 

  20. Lajeunesse, E., Quantin, C., Allemand, P., Delacourt, C.: New insights on the runout of large landslides in the Valles-Marineris canyons, Mars. Geophys. Res. Lett. (2006). https://doi.org/10.1029/2005GL025168

    Article  Google Scholar 

  21. Legros, F.: The mobility of long-runout landslides. Eng. Geol. 63(3), 301–331 (2002). https://doi.org/10.1016/S0013-7952(01)00090-4

    Article  Google Scholar 

  22. Lube, G., Huppert, H.E., Sparks, R.S.J., Hallworth, M.A.: Axisymmetric collapses of granular columns. J. Fluid Mech. 508(1), 175–199 (2004). https://doi.org/10.1017/S0022112004009036

    Article  ADS  MATH  Google Scholar 

  23. Lube, G., Huppert, H.E., Sparks, R.S.J., Freundt, A.: Collapses of two-dimensional granular columns. Phys. Rev. E 72(4), 041301 (2005). https://doi.org/10.1103/PhysRevE.72.041301

    Article  ADS  Google Scholar 

  24. Lucas, A., Mangeney, A.: Mobility and topographic effects for large Valles Marineris landslides on Mars. Geophys. Res. Lett. 34(10), L10201 (2007). https://doi.org/10.1029/2007GL029835

    Article  ADS  Google Scholar 

  25. Lucas, A., Mangeney, A., Ampuero, J.P.: Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat. Commun. (2014). https://doi.org/10.1038/ncomms4417

    Article  Google Scholar 

  26. McArdell, B.W., Bartelt, P., Kowalski, J.: Field observations of basal forces and fluid pore pressure in a debris flow. Geophys. Res. Lett. (2007). https://doi.org/10.1029/2006GL029183

    Article  Google Scholar 

  27. Montserrat, S., Tamburrino, A., Roche, O., Niño, Y.: Pore fluid pressure diffusion in defluidizing granular columns. J. Geophys. Res. 117(F2), F02034 (2012). https://doi.org/10.1029/2009JB007133

    Article  ADS  Google Scholar 

  28. Montserrat, S., Tamburrino, A., Roche, O., Niño, Y., Ihle, C.F.: Enhanced run-out of dam-break granular flows caused by initial fluidization and initial material expansion. Granul. Matter 18(1), 1–9 (2016). https://doi.org/10.1007/s10035-016-0604-6

    Article  Google Scholar 

  29. Roche, O., Gilbertson, M.A., Phillips, J.C., Sparks, R.S.J.: Experimental study of gas-fluidized granular flows with implications for pyroclastic flow emplacement. J. Geophys. Res. Solid Earth (2004). https://doi.org/10.1029/2003JB002916

    Article  Google Scholar 

  30. Roche, O., Montserrat, S., Niño, Y., Tamburrino, A.: Experimental observations of water-like behavior of initially fluidized, dam break granular flows and their relevance for the propagation of ash-rich pyroclastic flows. J. Geophys. Res. 113(B12), B12203 (2008). https://doi.org/10.1029/2008JB005664

    Article  ADS  Google Scholar 

  31. Roche, O., Montserrat, S., Niño, Y., Tamburrino, A.: Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: insights into the emplacement dynamics of pyroclastic flows. J. Geophys. Res. 115(B09), 206 (2010). https://doi.org/10.1029/2009JB007133

    Article  Google Scholar 

  32. Roche, O., Attali, M., Mangeney, A., Lucas, A.: On the run-out distance of geophysical gravitational flows: insight from fluidized granular collapse experiments. Earth Planet. Sci. Lett. 311(3), 375–385 (2011). https://doi.org/10.1016/j.epsl.2011.09.023

    Article  ADS  Google Scholar 

  33. Singer, K.N., McKinnon, W.B., Schenk, P.M., Moore, J.M.: Massive ice avalanches on Iapetus mobilized by friction reduction during flash heating. Nat. Geosci. 5(8), 574–578 (2012). https://doi.org/10.1038/ngeo1526

    Article  ADS  Google Scholar 

  34. Soria-Hoyo, C., Valverde, J.M., Roche, O.: A laboratory-scale study on the role of mechanical vibrations in pore pressure generation in pyroclastic materials: implications for pyroclastic flows. Bull. Volcanol. 81(2), 12 (2019). https://doi.org/10.1007/s00445-019-1271-3

    Article  ADS  Google Scholar 

  35. Valverde, J.M., Soria-Hoyo, C.: Vibration-induced dynamical weakening of pyroclastic flows: insights from rotating drum experiments. J. Geophys. Res. Solid Earth 120(9), 6182–6190 (2015). https://doi.org/10.1002/2015JB012317

    Article  ADS  Google Scholar 

  36. Xu, X., Sun, Q., Jin, F., Chen, Y.: Measurements of velocity and pressure of a collapsing granular pile. Powder Technol. 303, 147–155 (2016). https://doi.org/10.1016/j.powtec.2016.09.036

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Advanced Mining Technology Center (AMTC) and Departamento de Ingeniería Civil, form Universidad de Chile, the French National Research Institute for Sustainable Development (IRD, France) and the Chilean National Commission for Scientific and Technological Research, CONICYT, through Fondecyt Projects 1130910 and 11130254 and PIA Project AFB180004. We thank P. Mendoza and two anonymous reviewers for helpful comments on our work. We also thank C. González for his assistance with graphics. This is Laboratory of Excellence ClerVolc Contribution No. 481.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Montserrat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montserrat, S., Ordoñez, L., Tamburrino, A. et al. Influence of bottom roughness and ambient pressure conditions on the emplacement of experimental dam-break granular flows. Granular Matter 23, 57 (2021). https://doi.org/10.1007/s10035-021-01125-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01125-2

Keywords

Navigation