Skip to main content
Log in

Fire Detection Based on Fractal Analysis and Spatio-Temporal Features

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Fire detection is one of the most important needs of surveillance and security systems in industrial applications. In this paper, a novel fire detection algorithm based on motion analysis using fractal and spatio-temporal features is presented. Initially, in each frame, dynamic textures are detected through three different fractal analysis methods and thresholding techniques. In the first method, Kernel Principal Component Analysis technique is used with fractal analysis and in the next a temporal blanket method is proposed. Finally, the third method is introduced based on temporal local fractal analysis and Laplace method. An RGB probability model is provided to separate the moving regions that have similar colors to the fire regions in each frame. Then, several spatio-temporal features such as correlation coefficient and mutual information are extracted from the candidate regions. Lastly, a two-class SVM classifier is used to classify these candidate regions. Various experimental results show that our proposed algorithm outperforms the relevant state-of-the-art algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Chen ThH, Wu PH, Chiou YCh (2004) An early fire-detection method based on image processing. Proc Int Conf Image Process (ICIP) 3:1707–1710

    Google Scholar 

  2. Teng Zh, Kim JH, Kang DJ (2010) Fire detection base on hidden markov models. Int J of Cont Automation Syst 8(4):822–830

    Article  Google Scholar 

  3. Qureshi WS, Ekpanyapong M, Dailey MN, Rinsurongkawong S, Malenichev A, Krasotkina O (2016) fire detection using combined video processing approach. Fire Technol 52(5):1293–1317

    Article  Google Scholar 

  4. Rong J, Zhou D, Yao W, Gao W, Chen J, Wang J (2013) Fire flame detection based on GICA and target tracking. Optics Laser Technol. https://doi.org/10.1016/j.optlastec.2012.08.040

    Article  Google Scholar 

  5. Habiboǧlu YH, Günay O, Çetin AE (2012) Covariance matrix-based fire and flame detection method in video. Mach Vis Appl 23(6):1103–1113

    Article  Google Scholar 

  6. Wang T, Bu L, Yang Zh, Yuan P, Ouyang J (2020) A new fire detection method using a multi-expert system based on color dispersion, similarity and centroid motion in indoor environment. IEEE/CAA J of Auto Sinica 7(1):263–275

    Google Scholar 

  7. Çelik T, Demirel H (2009) Fire detection in video sequence using a generic color model. Fire Saf J 44(2):147–158

    Article  Google Scholar 

  8. Kong SG, Jin D, Li Sh, Kim H (2016) Fast fire flame detection in surveillance video using logistic regression and temporal smoothing. Fire Saf J 79:37–43

    Article  Google Scholar 

  9. Seo J, Kang M, Kim ChH, Kim JM (2015) An optimal many-core model-based supercomputing for accelerating video-equipped fire detection. J Supercomputing 71(6):2275–2308

    Article  Google Scholar 

  10. Foggia P, Saggese A, Vento M (2015) Real-time fire detection for video surveillance applications using a combination of experts based on color, shape and motion. IEEE Trans Circ Sys Video Tech 25(9):1545–1556

    Article  Google Scholar 

  11. WB. Horng, JW Peng, ChY Chen, 2005 A new image-based real-time flame detection method using color analysis. IEEE Int Conf Network Sens Cont.

  12. Yuan Ch, Liu Zh, Zhang Y (2017) Aerial images-based forest fire detection for firefighting using optical remote sensing techniques and unmanned aerial vehicles. J Intell Robot Syst 88(2):635–654

    Article  Google Scholar 

  13. Töreyin B, Dedeoǧlu Y, Güdükbay U, Çetin AE (2006) Computer vision based method for real-time fire and flame detection. Pattern Recognit. Letters 27(1):49–58

    Article  Google Scholar 

  14. Ko BCh, Cheong KH, Nam JY (2010) Early fire detection algorithm based on irregular patterns of flames and hierarchical Bayesian Networks. Fire Saf J 45(4):262–270

    Article  Google Scholar 

  15. Truong TX, Kim JM (2012) Fire flame detection in video sequences using multi-stage pattern recognition techniques. Eng Appl Artifi Intell 25(7):1365–1372

    Article  Google Scholar 

  16. Pu YR, Chen YJ, Lee SH (2015) Fire recognition based on correlation of segmentations by image processing techniques. Mach Vis Appli 26(7–8):849–856

    Article  Google Scholar 

  17. Verstockt S, Hoecke SV, Beji T, Merci B, Gouverneur B, Cetin AE, DePotter P, Walle RV (2013) A multi-modal video analysis approach for car park fire detection. Fire Saf J 57:44–57

    Article  Google Scholar 

  18. Yuan F (2010) An integrated fire detection and suppression system based on widely available video surveillance. Mach Vis Appl 21(6):941–948

    Article  Google Scholar 

  19. M Torabian, H Pourghassem, 2019 Dynamic-based fire detection using fusion of markov random field and PCA optical flow, 27th Iranian Conf Elec Eng (ICEE)

  20. Mueller M, Karasev P, Kolesov I, Tannenbaum A (2013) Optical flow estimation for flame detection in videos. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2013.2258353

    Article  Google Scholar 

  21. Liu ChB, Ahuja N (2004) Vision based Fire detection. Proc 17th Int Conf. Pattern Recognit. 4:134–137

    Google Scholar 

  22. Günay O, Taşdemir K, Töreyin BU, Çetin AE (2010) Fire detection in video using LMS based active learning. Fire Tech 46(3):551–577

    Article  Google Scholar 

  23. Wendeker M, Czarnigowski J, Litak G, Szabelski K (2003) Chaotic combustion in spark ignition engines. Chaos Soli Fract 18(4):803–806

    Article  Google Scholar 

  24. Ajith M, Martínez-Ramón M (2019) Unsupervised Segmentation of Fire and Smoke from Infra-Red Videos. IEEE Access 7:182381–182394

    Article  Google Scholar 

  25. Borges PVK, Izquierdo E (2010) A Probabilistic approach for vision-based fire detection in videos. IEEE Trans Circ Syst Video Techno. https://doi.org/10.1109/TCSVT.2010.2045813

    Article  Google Scholar 

  26. F Sthevanie, H Nugroho, FA Yulianto, 2013 Visual-based fire detection using local binary pattern-three orthogonal planes. IEEE Inter. Conf. Compute. Intell. Cybernetics.

  27. Maksymiv O, Rakand T, Peleshko D (2017) Video-based flame detection using LBP-based descriptor: Influences of classifiers variety on detection efficiency. Intell t Syst Appli 9(2):42–48

    Google Scholar 

  28. Khan Muhammad J, Ahmad I, Mehmood S, Rho BSW (2018) Convolutional neural networks based fire detection in surveillance videos. IEEE Access. 6:18174–18183

    Article  Google Scholar 

  29. Khan Muhammad J, Ahmad BSW (2018) Early Fire Detection using Convolutional Neural Networks during Surveillance for Effective Disaster Management. Neurocomputing 288:30–42

    Article  Google Scholar 

  30. Xie Y, Zhu J, Cao Y, Zhang Y, Feng D, Zhang Y, Chen M (Apr. 2020) Efficient video fire detection exploiting motion-flicker-based dynamic features and deep static features. IEEE Access 8:81904–81917

    Article  Google Scholar 

  31. Kim JH, Jo S, Lattimer BY (2016) Feature selection for intelligent firefighting robot classification of fire, smoke, and thermal reflections using thermal infrared images. J Sensors. https://doi.org/10.1155/2016/8410731

    Article  Google Scholar 

  32. J. H. Kim, Y. Sung, B. Y. Lattimer, 2017 Bayesian estimation based real-time fire-heading in smoke-filled indoor environments using thermal imagery. In Proceedings - IEEE Intern Conf on Robotics and Auto

  33. Kim JH, Lattimer BY (2015) Real-time probabilistic classification of fire and smoke using thermal imagery for intelligent firefighting robot. Fire Safe J 72:40–49

    Article  Google Scholar 

  34. Florindo JB, Bruno OM (2016) Local fractal dimension and binary patterns in texture recognition. Pattern Recogni Letters 78:22–27

    Article  Google Scholar 

  35. Xu Y, Ji H, Fermüller C (2009) Viewpoint invariant texture description using fractal analysis. Inter J Comp Vis 83(1):85–100

    Article  Google Scholar 

  36. Xu Y, Quan Y, Zhang Zh, Ling H, Ji H (2015) Classifying dynamic textures via spatiotemporal fractal analysis. Pattern Recogni 48(10):3239–3248

    Article  Google Scholar 

  37. Y Xu, Y Quan, H Ling, H Ji, 2011 Dynamic texture classification using dynamic fractal analysis. Intern Conf Comp Vis

  38. AB. Chan, N Vasconcelos, 2007 Classifying video with kernel dynamic textures. IEEE Conf. Comp. Vis. Pattern Recogni.

  39. Peleg SH, Naor J, Hartley R, Avnir D (1984) Multiple resolution texture analysis and classification. IEEE Trans Pattern Analysis Mach Intell 6(4):518–523

    Article  Google Scholar 

  40. Ko BCh, Cheong KH, Nam JY (2009) Fire detection based on vision sensor and support vector machines. Fire Safe J 44(3):322–329

    Article  Google Scholar 

  41. Ch Ko B, Ham SJ, Nam JY (2011) Modeling and formalization of fuzzy finite automata for detection of irregular fire flames. IEEE Trans Circ Sys Video Tech. https://doi.org/10.1109/TCSVT.2011.2157190

    Article  Google Scholar 

  42. Hashemzadehand M, Zademehdi A (2019) Fire detection for video surveillance applications using ICA K-Medoids based color model and efficient spatio-temporal visual features. Exp Sys Appl 130:60–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Pourghassem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torabian, M., Pourghassem, H. & Mahdavi-Nasab, H. Fire Detection Based on Fractal Analysis and Spatio-Temporal Features. Fire Technol 57, 2583–2614 (2021). https://doi.org/10.1007/s10694-021-01129-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-021-01129-7

Keywords

Navigation